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Abstract

In this paper, we introduce an output gap model that uses inequality constraints to

estimate it. Inequality constraints modify the output gap during periods of inconsis-

tency with related macroeconomic variables but allow it to follow the output's dynamics

freely during consistent periods. We evaluate our approach through simulation exper-

iments and a large empirical analysis, comparing it to traditional methods like the

simple Hodrick-Prescott �ltered output gap and the European Commission's output

gap estimates. Our �ndings show that inequality constraints enhance the correlation

coe�cient between related macroeconomic variables and the output gap, while incur-

ring only a marginal increase in model complexity. Furthermore, our model can reduce

revisions and improve the forecasting power of the output gap over more complex mod-

els, demonstrating that it is a promising alternative to existing models for estimating

the output gap.
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1 Introduction

The output gap, which measures the di�erence between the actual output of an economy

and its potential output, is an important concept in macroeconomic policy-making. It sig-

nals economic overheating or contractions and is used to guide economic policy, including

government expenditures and monetary policy (Buti et al. (1998), Taylor (2000)). However,

it is widely recognized that estimating the output gap has several limitations. The output

gap is an unobservable variable, and estimates of it are subject to considerable uncertainty

and error (Orphanides et al. (2000), Orphanides and Norden (2002), Cayen and Van Norden

(2005), Orphanides and Van Norden (2005)). Another concern is that output gap estimates

can be inconsistent with related macroeconomic variables, such as in
ation, and lack fore-

casting power for such variables (Clark and McCracken (2006), Marcellino and Musso (2011),

Sarwat and Ahmed (2013) and Kamber et al. (2017)). In this paper, we aim to address these

shortcomings.

The Hodrick-Prescott �lter (HP �lter) is a popular and simple method for estimating the

output gap (Hodrick and Prescott (1997)). It is often used as a benchmark for comparison

with more complex output gap estimates. However, it su�ers from a key limitation, it can

produce estimates that are inconsistent with output-related macro variables, such as in
ation

or unemployment. To address this issue, we propose a modi�ed version of the HP �lter that

introduces inequality constraints on the HP-�ltered cycle. Our approach corrects the output

gap estimate when it is inconsistent with related macro variables and leaves it unconstrained

outside of such periods. Importantly, we do not impose strong structural assumptions on

the exact relation between output gap and related macro variables. For example, we only

require that the output gap be non-negative in the presence of in
ationary pressures. This

new approach improves upon existing methods. It provides an output gap better aligned with

the output's dynamics that is nevertheless consistent with related macroeconomic variables,

while still maintaining the simplicity of the HP �lter.

Previous literature has attempted to correct the output gap by adding structural equa-

tions that link the output cycle to related macroeconomic variables, resulting in multivariate
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models with a high number of parameters and strong structural restrictions (Orphanides and

Norden (2002), Marcellino and Musso (2011)). In contrast, we impose inequality constraints

on the Hodrick-Prescott �ltered cycle. This has several advantages that are explained below.

First, it reduces the number of parameters that need to be estimated, which is particularly

useful for countries with short data and unstable relationships between the output gap and

macroeconomic variables. Second, since inequality constraints are imposed the output gap

estimate surely aligns with the chosen macroeconomic variable.1 Thirdly, our approach does

not necessitate introducing new structural equations to ensure consistency with the selected

macroeconomic variables. We admit that there could be di�erent structural forms that �t

the data, but we avoid making strong structural or causality statements while remaining con-

sistent with theoretical assumptions. This is advantageous when the true model is uncertain.

Finally, our approach maintains the simplicity and speed of estimation of the HP �lter.2

While our approach may produce inferior estimates when the multivariate model is the

true data generating mechanism, this scenario is unlikely in practice due to the di�culty in

identifying the true model. In fact, the variety of output gap models suggests that there is

a lack of consensus on the true data generating mechanism. Therefore, we prefer the output

gap to follow the output's dynamics and only impose restrictions when necessary. We do not

burden the output gap with �tting the dynamics of related macroeconomic variables; instead,

the inequality restrictions only attenuate output gap's magnitude. By avoiding structural

restrictions, we allow the data to speak more freely. Furthermore, our Monte Carlo simulation

demonstrates that our approach performs reasonably well even when the true model is the

multivariate model. Finally, a simple model, such as ours, may be advantageous to work

with under parameter and data uncertainty.

Additionally, in our empirical exercise, we compiled a comprehensive dataset from various

archives, spanning from Autumn 2004 to Spring 2021, for each of the EU 28 countries. We

use it to compare the performance of our approach with that of the HP �lter model and the

European Commission's (EC) model. We �nd that our approach increases the correlation

1In multivariate models, it is possible that the solution that maximizes the total model likelihood ignores
the related macroeconomic variable or instead over-�ts it and neglects the output's dynamics.

2Some multivariate models take several minutes to estimate. Our approach takes a second or less to
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between the related variable and the output gap estimate, it can reduce output gap revisions,

and improve its forecasting power relative to more complex models. These results suggest that

it provides a valuable alternative to traditional output gap estimation methods, particularly

in cases where the true data generating mechanism is unknown or di�cult to identify.

The term "output gap" was �rst coined by Okun in 1962, where he de�ned it as the di�er-

ence between actual output and potential output, with potential output being the maximum

output an economy can produce under full employment conditions Okun (1963). Over time,

various de�nitions and methods for estimating output gap have emerged. Gerlach (1999)

categorizes these methods into three groups: (i) statistical, (ii) structural, and (iii) mixed

approaches. Our proposed approach lies between the statistical and mixed approaches.

Statistical approaches, such as time-series �lters, are commonly used to extract the trend

and interpret it as potential output. The popular HP �lter (Hodrick and Prescott (1997))

is widely used, although alternative �lters exist (e.g., Baxter and King (1999), Butterworth

(1930), or Christiano and Fitzgerald (2003)). Univariate �lters, like the HP �lter, are pre-

ferred due to their simplicity and low parameter uncertainty.34 However, relying solely on

univariate �lters can produce counter-intuitive output gaps by ignoring information from

other variables such as unemployment or in
ation. In our baseline model, we enhance the HP

�lter with inequality constraints based on related variables to address this issue and retain

the simplicity of the HP �lter.

Structural approaches to estimating potential output include dynamic stochastic general

equilibrium models (DSGE) and structural vector autoregressive models (SVAR). DSGEs are

micro-founded models of the economy that de�ne potential output as "output in the absence

of rigidities." This concept is less intuitive to policymakers. Moreover, DSGEs impose strong

assumptions on the structure of the economy, are sensitive to small changes in parameters,

and do not consider trend estimation. Some examples of DSGE models include Juillard et al.

estimate.
3Another method is to regress output on a polynomial of time, as discussed in Gerlach and Smets (1999)

and Canova (2020).
4Hamilton (2017) proposes a third approach based on forecasting. A recent paper by Canova (2020) o�ers

an insightful critique of this and other approaches. According to Canova (2020), the polynomial �lter performs
best in recovering the output gap in many situations, although it should be noted that in his simulations,
the HP �lter also performs reasonably well.
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(2006), Hirose et al. (2007), and Vetlov et al. (2011). In the SVAR approach, permanent

supply and temporary demand shocks are identi�ed, and potential output is assumed to be a

sum of permanent shocks, while the output gap is assumed to be a sum of temporary shocks.

However, the SVAR approach heavily relies on identifying assumptions to derive permanent

and temporary shocks, which are not veri�able, making it less appealing for policymakers.

Some notable examples of the SVAR approach include Blanchard and Quah (1988), Claus

et al. (2000), Garratt et al. (2006), and Mitchell et al. (2008).

In the mixed approach, a structural equation is added to the univariate model. This

added equation links the output cycle to a third variable, such as the unemployment rate

(Okun's law (Okun (1963),Adams and Coe (1990) and Bene�s et al. (2010)). Similar, the

Phillips curve (Phillips (1958), Laxton and Tetlow (1992) and Kuttner (1994)) relates the

output cycle to in
ation. Some authors use alternative information, Laubach and Williams

(2003) considers the interest rate, Borio et al. (2016) credit growth, and Dobrescu (2006) the

external balance. The mixed approach is used by the EC and other international institutions

in a so-called production function setting (see the Model section). In our production function

model, we de�ne inequality constraints consistent with Okun's law and the Phillips curve by

considering variables such as the capacity utilization index and in
ation.

The mixed approach is an improvement over univariate models as it incorporates ad-

ditional variables to establish coherence between the output cycle and related variables.

However, this approach has limitations and can result in over-�tting or ignoring important

variables if not properly speci�ed. It tends to feature complex models that are di�cult to

estimate on small samples available in practice. In contrast, our model avoids these issues

as constraints are super-imposed to ensure consistency with economic theory. It is simple,

parsimonious and does not require parameter estimation. It reduces the likelihood of bias

due to parameter breaks or model misspeci�cation. Overall, it provides a robust alternative

for estimating potential output and the output gap.

The paper is organized as follows: In Section 2, we present our model and provide an

illustrative example. Section 3 discusses model extensions. The estimation algorithm is

described in Section 4, while Section 5 presents a Monte Carlo veri�cation of the model's

5



small sample properties. In Section 6, we introduce real data, which are then used in Section

7 to compare the performance of our model with that of the HP �lter and the EC. Finally,

Section 8 concludes the paper.

2 Model

Our baseline model is based on the HP-�lter approach, but augmented with inequality con-

straints. Inequality constraints are used in engineering to correct implausible state estimates

(see Simon (2010)). For example, due to noisy signals a gps positioning model might predict

that a car is o�-road, but inequality constraints ensure that projected car position is consis-

tent with the road space (Simon and Chia (2002)). In our model, we constrain the output

gap to be consistent with in
ation, unemployment, or other desired variable. This does not

require additional structural equations, making it parsimonious.

Before introducing the inequality constraints, we �rst present the HP-�lter model (eq.

(1)), as put forth in Harvey (1997) and Harvey and Trimbur (2008). The HP �lter decomposes

the output yt into a trend component tt and a cyclical component ct:

yt = tt + ct; ct � NID(0; �2c ); t = 1; :::; T (1)

where

tt+1 = tt + �t; (2a)

�t+1 = �t + �t; �t � NID(0; �2� ) (2b)

The trend tt follows a double-integrated random walk (eq. (2a)-(2b)). The cycle ct and

slope disturbance �t are assumed to be independent and normally distributed with zero mean

and non-negative variances �2. tt and ct are unobservable, but can be estimated using the

Kalman smoother. The solution for tt is a weighted average of past and future observations

of yt, which is evident from re-expressing the model in the form of a minimization problem
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of a loss function:

min
t1:::tT

TX
t=1

� 1
�2c

�
yt � tt

�2
+

1

�2�

�
�tt+1 ��tt

�2�
(3)

The Kalman �lter estimates a series (tt) that simultaneously minimizes the deviations of the

trend from the observable series (yt � tt) and the volatility of the trend (�tt+1 ��tt). The

model comprises of a single observable variable (yt) and is characterized by two parameters

(�2c and �2� ), thus a unique solution is only possible if we impose a restriction. To achieve

this, we set a constraint on the ratio of the two variances, 1
�
=

��
�c
. The value of � determines

the degree of smoothness of the trend. A higher � places more weight on the volatility part,

resulting in a smoother trend with greater weight on distant observations. Conversely, a

lower value of � places more emphasis on the deviations of the trend from yt, producing a

more volatile trend that closely tracks yt.

To simplify the introduction of inequality constraints, we express the model in a state-

space form, following the notation in Durbin and Koopman (2012):

yt = Zt � �t + �t; (4a)

�t+1 = T � �t +R� �t; �t � N(0; Q) (4b)

where yt is a n � 1 vector of dependent variables, where in our case, n = 1. Other vectors

and matrices are de�ned as:

�t =

2
66664
tt

tt�1

ct

3
77775 ; Zt =

�
1 0 1

�
; T =

2
66664
2 �1 0

1 0 0

0 0 0

3
77775
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R =

2
66664
1 0

0 0

0 1

3
77775 ; �t =

2
64�t
ct

3
75 ; Q =

2
64�� 0

0 �c

3
75

We next modify the model presented in (4a)-(4b) by adding inequality constraints. The

augmented system will have to meet the following inequality constraint(s):

Dt � �t + �t > dt if (xt > �xt) ^ (ct < 0); where �t � NID(0; ��)

Dt � �t + �t 6 dt if (xt < �xt) ^ (ct > 0)

(5)

The matrix Dt is a known s� n matrix, where s represents the number of restrictions to

be imposed. The vector dt is a pre-set s� 1 vector of values, and we will explain the purpose

of �t shortly.

Each row of the matrix Dt serves to select a particular state from the vector �t, or a

combination of states, that will be subject to the imposed constraint. For instance (see the

�rst part of constraint in (5)), to enforce non-negativity on the cycle (ct � 0) when a related

variable xt exceeds a certain threshold �xt, we can set Dt equal to the row vector [0; 0; 1]. This

constraint will remain inactive as long as the value of the cycle is non-negative. However, if

during a given period, the cycle evaluates to a negative value (ct < 0), then the constraint

will be violated and will become active. During such periods, if �t = �� = 0 , Dt selects the

cycle (Dt��t = ct) and evaluates it to dt. If dt is set to zero, then the cycle will be forced to

close (ct = dt = 0). This inequality constraint ensures that the cycle remains non-negative

whenever xt exceeds the average threshold (�xt).

The inequality constraint described thus far is referred to as a "hard" constraint because it

forces a counter-intuitive cycle to a value of zero, e�ectively closing the output gap. However,

instead of using hard constraints, we can use "soft" constraints that do not completely close

the gap, but instead reduce its size. Soft constraints are implemented using a variable �t,

which is de�ned as a zero-mean random noise. This variable controls the tightness of the

constraints. When �� is set to a positive value, the constraint becomes "soft", allowing the
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cycle to be evaluated outside the valid space, but still close to it. In this way, we can introduce

either hard or soft constraints depending on the desired level of stringency.

Inequality-constrained models can be estimated with two methods: i) the active set

method (see Simon (2010), Alouani and Blair (1993), Sircoulomb et al. (2008)) and 2) the

interior point approach (see Bell et al. (2009)). We use the active set method because it

is more computationally e�cient. According to this method, only constraints active at the

solution a�ect optimality conditions and, when active, they can be expressed as equality con-

straints. At each iteration, the algorithm solves an unconstrained optimization problem. If

a previously inactive constraint becomes active, we replace the binding inequality constraint

with an equality constraint:

Dt � �t + vt = dt (6)

Optimality properties for equality constrained estimator are discussed in Simon and Simon

(2003) and Gupta and Hauser (2007).

Simon (2010) presents four methods for estimating state-space models with equality con-

straints. The perfect measurements approach entails augmenting the model presented in

(4a)-(4b) with the inclusion of (6), during periods characterized by binding constraints. The

estimate projection approach involves estimating the unconstrained state variables using a

standard Kalman �lter, and then projecting them onto the constraint surface. The gain pro-

jection approach involves modifying the Kalman gain to take into account the constraints.

Finally, the probability density truncation approach involves truncating the probability den-

sity function of the state variables to satisfy the constraints. We employ the perfect mea-

surements approach due to the mathematical equivalence of state estimates among the four

approaches, as well as its computational e�ciency and ease of implementation. Speci�cally,

we expand the model in the following manner:
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2
64yt
dt

3
75 =

2
64Z
Dt

3
75� �t +

2
640
�t

3
75 ; where �t � NID(0; �2�) (7)

When a constraint is binding, the cycle ct is selected and assigned the value dt, using

D� �T . In our example, we have set dt to zero. If the variance �2� is positive, the estimated

value of the cycle decreases, leading to a reduction in the output gap. When the variance

is zero, the cycle evaluates to zero, indicating that the output gap closes. The equation (7)

represents our baseline model.

The constraint imposed in equation (7) is redundant when the inequality constraints are

not binding. During such periods, we can use either the model in (4a-4b), or we can treat

dt as a missing value to prevent it from a�ecting the state vector �t. This is achieved by

either: i) setting Dt = 0 (Mariano and Murasawa (2010)), ii) setting �2� = 1 (Giannone

et al. (2008)), or iii) reducing the model dimensions as explained in Durbin and Koopman

(2012).

To contrast our proposed model with the HP �lter, we can once again represent the model

as a problem of minimizing a loss function:

TX
t=1

� 1
�2c

�
yt � tt

�2
+

1

�2�

�
�tt+1 ��t

�2
+

1

�2�
(Dt�t � dt| {z }

=ct�dt

)2
�

(8)

When constraints are binding the term (Dt�t�dt) enters the loss function. When dt is set to

zero, the term (Dt�t� dt) is minimized when ct is set to zero as well and the gap is reduced.

The extent of this correction is determined by the value of �2� , which acts as an importance

weight for the term (Dt�t � dt). If �2� is set to zero, the weight on (Dt�t � dt) becomes

in�nite, resulting in a gap evaluation of zero. On the other hand, when �2� is positive, the

gap is reduced to some extent.

When estimating �� with maximum likelihood, it can be challenging to obtain plausible

estimate due to its tendency to be either very close to zero or unreasonably large for certain
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countries.A similar issue arises when estimating the smoothing constant � =
��
�c

of the HP

�lter using maximum likelihood, as demonstrated in studies such as Hamilton (2017) and

Harvey and Jaeger (1993). Harvey and Jaeger (1993) notes that the smoothing constant

is to be �xed in order to obtain sensible results. Therefore, we prefer to calibrate this

parameter to a reasonable value based on economic intuition. Calibration o�ers the advantage

of simplifying interpretation and reducing the number of estimable parameters. To achieve

this, we introduce a parameter � that links �� to the cycle's variance:

� =
��
�c

(9)

The parameter � is de�ned as the ratio between the variance of the constraint and the

variance of the cycle, and it determines the level of stringency of the constraints. Higher

values of � indicate weaker con�dence in the restrictions imposed. When � is set to 1, the

model produces a solution that is close to the unconstrained problem, the HP �lter solution.

On the other hand, when � is set to 0, the model produces the solution with hard constraints.

2.1 Estimation

The following steps describe the estimation algorithm:

� Set the values for the parameters f�; �g and initialize vector dt to missing values for

all time points t: dt = :; 8t.

� Estimate the state vector �t, which represents the trend and cycle component of the

time series, using a Kalman smoothing algorithm. The estimation is based on the

observed data yt and the current state vector dt. Since dt is initialized as missing values

on the �rst iteration, the smoothed state will be equivalent to the trend component

estimated by the Hodrick-Prescott (HP) �lter.

� Verify whether the estimated state vector �t violates any constraints imposed on the

model, which are de�ned by Equation (5). The algorithm progresses forward in time
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from t = 1 to T . When the �rst violation is detected, the corresponding dt value is

set to zero and the algorithm immediately returns to Step 2 to re-estimate the state

vector5. The algorithm stops if no new violations are detected.

So far, we introduced the baseline model and discussed its estimation. The next section

will present an illustrative example and two popular model extensions that are often used in

practice.

2.2 Illustrative example

Figure (3) shows the estimated output gap for EU27 (1995-2021)6 using the Autumn 2019

vintage, with a signal-to-noise ratio set to � = 100. To save space, we will only present

�gures for the EU27 area. Inequality constraints were derived from the cycle of the GDP

de
ator (HP �ltered and shown in Figure 4). The black dotted line in �gure (3) is the EC's

output gap estimate, while the black solid line with square markers represents the output

gap estimated using our model with hard constraints (� = 0). The periods in which the

inequality constraints were binding are marked by a blue background. To avoid instabilities

due to rounding errors, we set � to 1e� 8.

To illustrate the e�ect of relaxing the tightness of constraints, we can observe the esti-

mated output gaps for di�erent values of �. As � increases, the constraints become less bind-

ing and the estimates move closer to the unconstrained output gap (depicted with light-grey

line with triangle markers). In the �gure, the output gaps with soft inequality constraints are

shown in grey and tend to evaluate between the output gaps with hard constraints and the

unconstrained output gap. However, it is important to note that hard constraints can a�ect

the trajectory of the output gap in periods adjacent to the period in which the constraint

binds, which may lead to deviations from this pattern.

Figure (3) shows that inequality restrictions attenuate the output gap during periods

5This is done because imposing a constraint on the state vector at time t may change the trajectory of
the state vector in neighboring time points, which often makes constraints further in time redundant.

6EU27 includes: Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Ireland, Greece, Spain,
France, Croatia, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria,
Poland, Portugal, Romania, Slovenia, Slovakia, Finland and Sweden.
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when it is inconsistent with the signaling variable. For example, the unrestricted output gap

for the year 2013 is negative (indicated by the grey line with the triangle mark in Figure (3)).

However, in that year, the cycle of the GDP de
ator was still positive, which is inconsistent

with a negative output gap. The imposition of inequality constraints reduces the size of the

output gap (soft constraints) or eliminates it altogether (hard constraints) in that year.

It is worth noting that hard constraints can also impact the trajectory of the output gap

in periods adjacent to when the constraint �rst becomes binding. As observed, the output

gap with hard constraints remains closed not only in the years 2007 and 2013 but also in the

subsequent years 2014 and 2015. Figure (5) demonstrates how these restrictions determine

potential output. Speci�cally, they imply lower potential immediately before and during the

crisis, consistent with overheating before the crissis and stronger scarring e�ects during the

crisis.

However, we stress that this is an illustrative example and is not intended to establish a

general truth. Its purpose is to illustrate the mechanics of our approach. A better-informed

estimator would dedicate signi�cantly more attention to signaling variable selection and the

selection of related parameters.

2.3 Model extensions

2.3.1 Model with autoregressive cycle

The model presented can be extended with an autoregressive cycle (see for example Watson

(1986), Clark (1987), or Morley et al. (2003)). Additional details can be found in section

Model extension (1) in the appendix, where we also provide an example estimate for the

EU27 (see Figure (6)).

Upon analyzing the impact of incorporating an autoregressive cycle (limited to selected

countries), we observed that it did not signi�cantly alter the results presented in the empirical

section of this study. This �nding aligns with previous research, such as Harvey and Jaeger

(1993), which highlights the di�culty in distinguishing the HP-�lter cycle from the cycle

estimated in a model with an autoregressive component. As a result, we focus our further
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analysis on the models without the autoregressive cycle.

2.3.2 Model consistent with the production function approach to output gap

estimation

The production function approach to output gap estimation involves estimating potential

output from the inputs to production rather than modeling the output series. Speci�cally,

it includes applying various models to the series that enter the Cobb-Douglas production

function, such as labor, capital and total factor productivity (see Cobb and Douglas (1928)).

The IMF, OECD, and the EC are among the organizations that utilize this approach for

output gap estimation.

We will compare our production function model with the EC's. This will allow us to

assess the e�ectiveness of our approach within a production function setting. The production

function model is further described in section Model extension (2) in the appendix. Here, we

mention that we apply the baseline model to estimate the trend of total factor productivity

(TFP) and the trend of the unemployment rate. The trend of TFP is estimated using

inequality restrictions derived from the capacity utilization index (CUBS), while for the

unemployment rate, we use either the real GDP de
ator or wages to derive the inequality

restrictions. The remaining components of our model adhere to the EC's speci�cation (see

Havik et al. (2014)), which is detailed in the appendix as well.

2.4 Monte Carlo veri�cation of small sample properties

In order to evaluate the performance of our method, we conduct a Monte Carlo study. First,

we estimate a multivariate trend-cycle model on the EU15 data and use it as the true model

to simulate new data.7 8 Next, we estimate three di�erent models using simulated data.

The �rst model is a multivariate model with the same structure as the true model. This

model is expected to perform the best, as it matches the model that generated the data.

7EU15 countries are: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Sweden and United Kingdom.

8European Commission publishes country-speci�c CUBS indicators. We constructed EU15 CUBS indica-
tor by weighting country-speci�c CUBS indicators by their rGDP shares. For many EU27 countries CUBS
is not available from 1996 onward.
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The second model is the univariate HP �lter model, which neglects the multivariate nature

of the true model. The last model is our baseline model, which uses inequality constraints to

incorporate information from multiple variables, but does not have the exact same structure

as the true model. We �rst demonstrate that while the inequality constrained model may not

correspond exactly to the true data generating process, it still performs well and improves

over the HP �lter model.

We estimate the following multivariate trend-cycle model for the EU15 data of the 2021

Spring vintage:

yt = tt + ct (10)

tt = 2� tt�1 + tt�2 + �t (11)

CUBSt = � � ct + ut (12)

The model decomposes output yt into trend tt and cycle ct. The trend component is

modeled as a second-order random walk process in (11). The cycle component is constructed

to capture the business cycle by loading it on the capacity utilization rate (CUBSt) in (12),

which is a widely used indicator of the state of the economy. The root mean squared error

(RMSE) is used to compare the performance of the three models, which is calculated as the

di�erence between the simulated cycle and the re-estimated cycle. We conduct 1000 Monte

Carlo replications and �x the ratio between the two variances (��, �c) to 10 or 100. The

sample size is varied between T = [10; 25; 50]. We also experiment with di�erent values of

tightness of restrictions for the inequality constrained model.

Figure (1) displays the results of this experiment, which includes twelve �gures. The four

columns represent varying levels of restriction tightness (� = 1e� 8; 0:05; 0:5; 1), and the

three rows correspond to di�erent sample sizes (T = 10; 25; 50). The vertical axis of each

�gure represents the root mean square errors (RMSEs). The horizontal axis represents the

value of the smoothness parameter (� = 10; 100). The RMSE for the (true) multivariate

model is represented by red square, while the HP �lter and inequality constrained �lters are
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represented by blue circle and yellow triangle, respectively.

In this experiment, the multivariate model (red square) achieved the lowest RMSE, as

it accurately represents the true data generating process. The HP �lter (blue circle), which

disregards the information contained in the CUBS variable, achieved the highest RMSE

in most cases. The RMSE of the inequality constrained �lter (yellow triangle) tends to lie

between these two estimates, indicating that it incorporates some information from the CUBS

variable, though not as much as the multivariate model.

We �rst comment on the model with soft constraints (� = 0:05; 0:5; 1), reported in columns

(2)-(4) and visually distinguished from the model with hard constraints by a vertical dashed

line. It is worth noting that as the restrictions are relaxed (indicated by an increase in �

from 0:05 to 1), the RMSE of the inequality constrained �lter approaches that of the HP

�lter. Visually, this can be observed as the yellow triangle moves closer to the blue dot.

When the tightness of restrictions is set to 1, the solution of the inequality constrained �lter

resembles that of the HP �lter. Alternatively, when the tightness of restrictions is set to

0:05, the inequality constrained �lter closes the RMSE-gap between the true and the HP

�lter solution by about half. This demonstrates how tightness of constraints (�) governs the

extent to which the associated variable in
uences the solution, leading to improved accuracy

in estimation.

Furthermore, the sample size (T ) has a limited impact on the accuracy of our model and

other models. While the root mean square error (RMSE) decreases slightly with an increase

in sample size, the improvement is not substantial. However, all of the investigated samples

are small by conventional standards, as are the yearly data used in practice to estimate the

output gap. The smoothness of the trend (�) seems to have a more pronounced impact,

a�ecting all models to a similar degree. Increasing the smoothness parameter leads to higher

RMSE values across all models. This relationship arises because a smoother trend results in

a more volatile cycle and a larger discrepancy between the true and estimated cycles.

We now refer to the model with hard constraints, which is reported in column (1). It is

evident that the application of hard constraints (� = 1�8) can impede the performance of the

inequality constrained �lter. This e�ect is particularly noticeable in the cases with T = 50
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and � = 100, as well as T = 25 and � = 100, where the inequality constrained �lter exhibits

the poorest performance. The cause is evident from Equation (12) which contains a noise

term (ut), indicating that the signaling variable (CUBSt) may not always deliver the correct

signal for the output gap. Based on this �nding, we discourage the use of hard constraints

in practical applications.

In the next experiment we demonstrate that the inequality constrained �lter performs

better than the multivariate �lter in a situation where an irrelevant variable is mistakenly

included in the model. To illustrate this, we begin by simulating output based on the model

presented in equations (11)-(12). Subsequently, we substitute the simulated draws of CUBSt

with simulated draws of the real e�ective exchange rate, which is not part of the actual data

generating process. In particular, we employ an autoregressive (AR) process to generate

draws for the real e�ective exchange rate of the EU15. This scenario serves as an analogy for

a practitioner mistakenly employing a loosely related or a highly noisy variable to estimate

the output gap.

Figure (2) illustrates the results of this experiment. When constraints are soft, the mul-

tivariate model exhibits the poorest performance, while the HP �lter demonstrates the best

performance, aligning with expectations. The RMSE of the inequality constrained model

typically falls between these two extremes. Notably, as we progressively relax the restrictions

(� increases), the RMSE of the multivariate model gradually converges towards that of the

HP �lter model which performs best. Additionally, we observe that in this experiment, the

sample size plays a more signi�cant role in determining the root mean square error (RMSE).

This holds especially for the multivariate model. With an adequate sample size, the mul-

tivariate model e�ectively learns the true value of �, which is near zero in this scenario,

resulting in improved performance. This is evident in the case of T = 100 and � = 0:25.

In cases, where � is set to 0:5 or higher the inequality constrained �lter retains its superior

performance. Therefore, we recommend setting � to values higher or equal to 0:25 when

practitioners are uncertain about whether a particular variable drives the output gap.

These two experiments demonstrated that the inequality constrained �lter performs rela-

tively well in small samples, regardless of whether the signaling variable accurately captures
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the underlying cycle or when the assumed model is 
awed. These �ndings highlight the

robustness of the inequality constrained �lter in practical scenarios.

3 Empirical application

We apply our estimation procedure to real-world data by collecting two vintage datasets

for EU countries. We use them to estimate two models, namely the baseline model and

the production function model. We then compare these models to alternative estimation

procedures, such as the HP �lter and the EC's model. Additionally, we evaluate these

models across various dimensions that are essential for policymakers. Finally, we conclude

this chapter with a section on the best-performing models.

3.1 Data

We estimated our models using two real-time datasets collected from the archives of the EC's

website for the Output Gap Working Group.9

The �rst dataset contains the series entering our baseline model. It starts with the vintage

Autumn 2004 and concludes with the vintage Spring 2021. As the European Commission

(EC) generates biannual forecasts, in Autumn and in Spring, this dataset encompasses a total

of 34 vintages for 28 European countries.1011 These vintages include forecasts up to T+2,12

which makes our estimates subject to endpoint bias.13 Based on these data, the inequality

restrictions were derived from the consumer price index, wage in
ation, unemployment rate,

or the capacity utilization index.

In the early vintages, not all the series necessary for the production function model are

available and the forecasts are limited to T+2.14 The �rst vintage that includes all the series

9The data is available on: "circabc.europe.eu" �Browse categories �Economic and Financial A�airs
�Output Gaps �Library. Folder "99. Archives".

10The data includes the UK.
11Occasionally the EC also produces an interim Winter or Summer forecast.
12We follow the EC's convention of de�ning T. In Autumn, T is the current calendar year and in Spring T

is the past calendar year.
13Endpoint bias arises from the tendency of the HP �lter (and other smoothing �lters) to close the cycle

at the end of the sample.
14With the working age population (15-75 years old) most often being the missing series.
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entering our production function model is Spring 2014. Therefore, we estimate the production

function model for 15 vintages from Spring 2014 until Spring 2021. These vintages include

forecasts for up to T+5, reducing the impact of endpoint bias on our estimates.15 For this

model and data, the inequality restrictions for the total factor productivity were derived using

the capacity utilization index, while those for the unemployment rate cycle were derived from

the real GDP de
ator or wage in
ation (see section Model extension (2) in the appendix).

The data for the old member states is primarily accessible from the 1960s onward, while

for the new member states, it generally begins in the 90s. Due to the relatively limited

duration of the data series for the new member states, the comparison statistics (which will

be introduced later) will be computed from 2000 onwards to ensure a consistent analysis.

A more comprehensive overview of the datasets can be found in the online appendix (see

section Data).

3.2 Results

In subsequent sections, we will compare the baseline model and the production function model

with the alternative approaches. We conduct a comparison for both models as they each come

with their advantages and disadvantages. A more precise comparison can be made for the

baseline model as it features a larger number of vintages (34). However, the baseline model is

susceptible to endpoint bias because it was estimated using data that include forecasts up to

the time period T+2. On the other hand, the production function model is estimated using

data that include forecasts up to T+5, and it is expected to exhibit a smaller endpoint bias.

Unfortunately, its estimation is based on a small number of vintages (15), which introduces

uncertainty in its comparison.

We demonstrate the e�ectiveness of our approach by performing three types of com-

parisons16. First, we use a correlation analysis to show that the constraints incorporate

information from a signaling variable into the output gap. Second, we compare di�erent

15It should be noted that endpoint bias can be reduced only if forecasts are accurate.
16Early version of the paper also included an analysis of output gap sign reversals. We omit it for space

considerations and because most sign reversals were of little practical importance (most occur due to a narrow
crossing of the zero-gap value (e.g.) from -0.05% to +0.05%.
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output gap estimates based on the size of their revisions over time. Finally, we evaluate the

forecasting power of di�erent gap models. Our results show that the inequality constraints

can produce smaller revisions compared to the EC's or HP �lter estimates, depending on the

restricting variable and model settings. Additionally, our method delivers output gaps with

good forecasting performance.

We will consider the model estimated on the latest vintage (Spring 2021) as a proxy

for the "true" output gap due to its utilization of a more extensive data set. We will then

compare the estimates from earlier vintages to the Spring 2021 estimate.

In accordance with economic theory and from a policy perspective, several variables could

indicate counter-intuitive gaps. We derive inequality constraints from four variables: in
a-

tion17, wage in
ation, unemployment rate, or capacity utilization index. Inequality restric-

tions can only be derived from stationary variables. To make them stationary, we consider

three di�erent approaches. Firstly, we detrend them with an (a) HP �lter. However, the HP

�lter is sensitive to the arrival of new data and this could lead to instabilities. As such, we

also consider demeaning variables with their own (b) 5-year moving average (5y MA) and by

(c) di�erencing them.

The output gap of country i for year t and data vintage v is denoted by OGv
i;t. This

output gap is estimated using a signaling variable x, with inequality constraints of tightness

� and a signal-to-noise ratio of �. Thus, we can represent the output gap as:

OGx;�;�
i;t;v =

Yi;t;v � Y
x;�;�

i;t;v

Y
x;�;�

i;t;v

(13)

The notation introduced de�nes the output gap of country i in year t, data vintage v, using

the signaling variable x, constraint tightness �, and signal-to-noise ratio �. Here, Y denotes

the actual output and �Y denotes the potential output. The vintage v is represented by the

year and season, where season can be either Spring (1) or Autumn (2). For instance, the

Spring 2014 vintage is denoted by v = `2014; 10. For clarity purposes we suppress superscripts

17Expressed from real GDP de
ator.
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`x; �; �' in the remained of the text.

The estimates are analyzed in two ways: in-sample and real-time. In the in-sample

analysis, we compare estimates based on observable data from each vintage with the estimates

obtained using the �nal vintage data-set (Spring 2021) for the same period. For example, if we

use the Spring 2014 vintage (v = `2014; 10), data is considered in-sample when t � y = 2014

because only data up to the year t = 2013 is observable.

In the real-time analysis, the output gap is calculated for the �scal year T+1 and according

to the EC's terminology. For instance, for the vintage v = `2014; 10, data is considered T + 1

when y = 2014. The output gap estimate is then based on the 1-year ahead forecast. However,

for the vintage v = 2013; 20, data is also considered T + 1 in ~y = 2014 because governments

prepare budget plans for the �scal year 2014 in Autumn 2013. In Autumn, the output gap

estimate is based on the 2-year ahead forecasts. In this way, the real-time comparison re
ects

the use of the output gap in practice18.

We used the EC's (European Commission) forecasts throughout the analysis. This choice

was made to prevent di�erences in forecasts from a�ecting the comparison, and to make the

analysis more realistic by reducing endpoint bias.

In the subsequent sections of this paper, we will compare three output gap estimates: our

Inequality Constrained Output Gap (IC GAP), the HP Filtered Output Gap (HP GAP),

and the Output Gap estimated by the Economic Commission (EC GAP). We will assess

their performance based on �ve criteria: the strength of the in-sample correlation with the

signaling variable used for estimating the IC GAP (CORR), their correlation in real-time

(CORR T+1), magnitude of in-sample revisions (REV), magnitude of real-time revisions

(REV T+1), and the e�ectiveness of the output gap in forecasting the signaling variable

(FCSE). Similar comparisons have been conducted in previous studies, such as Orphanides

and Norden (2002), Bundesbank (2014), and Mc Morrow et al. (2015).

We will examine these criteria across various signaling variables (e.g., real GDP de
ator,

wage in
ation, unemployment rate, and capacity utilization rate), employing di�erent tech-

niques to induce stationarity (e.g., HP �lter cycle, demeaning with a 5-year moving average,

18The results do not change if we instead de�ne T + 1 as the �rst forecasted data point.
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and di�erencing), employing distinct smoothing constants (� = 10; 100), and varying the

level of constraint stringency (� = 0:05; 0:1; 0:25; 0:5; 1). For an overview of the estimated

models, please refer to section Models in the appendix.

Given the substantial volume of results, including them in the paper would require a sig-

ni�cant amount of space. Therefore, we have included them in the online appendix ([LINK]).

However, Table (1) provides a representative excerpt from these results.

The left panel of Table (1) presents the outcomes of the baseline model, which utilized

the unemployment rate, made stationary by di�erencing, to derive the constraints. The

smoothing constant was set to 10. In the right panel, the results of the production model are

displayed. This model employed the GDP de
ator, demeaned using a 5-year moving average,

to derive the constraints. The smoothing constant was also set to 10.

These two models were chosen due to their good performance across all �ve comparison

criteria, demonstrating the advantages of our proposed approach (refer to the "Best Perform-

ing Models" section). Throughout the rest of this paper, we will frequently refer to Table

(1).

3.2.1 Correlation analysis

We use inequality constraints to restrict the output gap when it contradicts the signaling

variable, with the aim of increasing the correlation between the estimated output gap and the

signaling variable. To assess the e�ectiveness of these constraints, we compare the correlation

coe�cients between the output gaps and the signaling variables.

In-sample results: To assess the general in-sample performance of our approach, we �rst

calculate the average correlation coe�cient across all country-vintage pairs.

r =
1

N

NX
i=1

1

V

VX
v=1

ri;v =
1

N

NX
i=1

1

V

VX
v=1

PT

t=t1
(OGi;t;v �OGi;v)(xi;t;v � xi;v)qPT

t=t1
(OGi;t;v �OGi;v)2(xi;t;v � xi;v)2

(14)

Here, ri;v represents the correlation coe�cient of country i and vintage v estimated on the

interval [t1; T ]. ri;v measures the extent of correlation between the country-speci�c output gap
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(OGi;t;v) and the corresponding signaling variable (xi;t;v). Individual correlation coe�cients

were calculated for the period from t1 = 2000 to T = y� 1 (or t = 2000; :::; y� 1). The value

of �r is the average correlation coe�cient across all country-vintage pairs. N and V denote

the total number of countries and vintages, respectively.

Rows marked as CORR in Table (1) depict the average correlation coe�cients between

the output gap (OGi;t;v) and the selected signaling variable (xi;t;v). The left panel presents

the correlation coe�cients for the baseline models, while the right panel displays those for the

production function models. Within each panel, we present the average correlation coe�cient

for the inequality constrained output gap (IC Gap), followed by the HP gap and the EC's

gap. The analysis also explores various levels of restriction tightness, ranging from strong

restrictions (� = 0:05) to increasingly looser restrictions (� = 0:10; 0:25; 0:50; 1:00)19. These

are listed in the �rst column labeled �. It is important to note that constraint stringency

only a�ects the inequality constrained output gap.

We �rst examine the correlation coe�cients for the baseline model. When restrictions

are strong (� = 0:05), the correlation coe�cient between the growth of the unemployment

rate and the inequality constrained gap is 0.67.20 However, when the tightness of constraints

decreases, the correlation coe�cient decreases to 0.53 when � = 1, which is close to the

unrestricted model's correlation coe�cient of 0.48 (see the HP gap column). This pattern

is consistent for other variables and other signal-to-noise ratios. In essence, the inequality

constraints work to reduce the size of the output gap OGi;t;v when it does not align with the

signaling variable xi;t;v, thereby increasing the correlation between the two (as evidenced by

equation (14)). This also demonstrates how constraint stringency � can increase or decrease

the correlation.

The right panel displays the results for the production function model. Here as well,

the inequality constraints increase the correlation between the signal and the output gap,

although the correlation is lower in magnitude. This was expected since this model also

includes variables whose trend does not depend on inequality constraints.

19As mentioned in the Monte Carlo section of the paper, hard restrictions (with � = 0) are often overly
restrictive for practical purposes.

20Unemployment rate is negatively correlated with the output gap. For ease of comparison, we have
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Table (1) demonstrates the results for two selected variables. However, to asses general

properties of the method the experiment was repeated over a range of variables, stationarity

inducing transformations and smoothing constants. Table (2) reports summary results. It

displays the share of instances where the inequality constrained output gap outperformed

the HP �lter or the EC's output gap for each of the comparison criteria and demeaning

procedure. Note that these shares are calculated across all countries, vintages, smoothing

constants � and constraint stringency settings �.

The row labeled CORR in Table (1) indicates the percentage of instances where the in-

equality constrained output gap displayed a stronger correlation with the signaling variable

compared to the HP �lter or the EC's output gap. We observe that the inequality con-

strained �lter consistently generates output gaps that exhibit higher correlation than the HP

�lter, regardless of the speci�c variable considered (e.g., rGDP de
ator, wage in
ation, unem-

ployment rate, capacity utilization), the demeaning procedure employed (cycle, demeaned,

di�erenced), or the model type (baseline, production function), even if constraints are weak,

such as when � = 1. The reported percentage of output gaps better correlated with the

signaling variable than the HP �lter gap is always 100

We next compare the inequality constrained output gap to the EC's output gap. The

reported percentages are now lower, indicating that the EC's output gap can be better cor-

related with the signaling variable than the inequality constrained output gap. For example,

when data is di�erenced the inequality constrained output gap is better correlated with the

signaling variable only in 33% of cases, for the baseline model. However, note that the re-

ported 33% includes models with low stringency of restrictions (i.e. � = 0:5; 1). Typically,

the inequality constrained output gap becomes better correlated with related variables when

we impose stronger restrictions (� = 0:05; 0:1). In fact, for our most restricted setting,

when � = 0:05, the inequality restricted gap is better correlated with signaling variables

than the EC's output gap for all variables, except when capacity utilization is used to derive

the restrictions. This holds despite the simplicity of our model, which does not require the

estimation of additional equations.

reversed its sign in the table.
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Based on the results presented, the inequality constrained output gap is always better

correlated with the signaling variable when compared to the HP gap. It tends to be better

correlated compared to the EC's output gap when restrictions are su�ciently tight (� =

0:05; 0:1; 0:25).

Finally, we have not been selective in presenting these averages with respect to signaling

variables or parameter settings. We have simply reported averages across all combinations.

However, being selective could further improve the performance of the approach.

Real Time results: To assess the performance of our approach as it would be applied

in practice, or in real-time, we conducted a similar analyses as before but we calculated

the correlation coe�cient between the inequality-constrained output gap and the restricting

variable for the upcoming �scal year:

CORR =
1

N

NX
i=1

ri =
1

N

NX
i=1

PV

v=1(OGi;t=y;v �OG
v

i )(xi;t=y(v);V � xVi )qPV

v=1(OGi;t=y;v �OG
v

i )
2(xi;t=y(v);V � xVi )

2

(15)

In this equation, unlike eq. (14), the correlation is calculated for periods with t = y (before

it was t = 1:::y� 1), where y derives from v = y� s. For example, for vintage v = 2014� 1',

it refers to year y = 2014 and for vintage v = 2014 � 2' it refers to year y = 2015. A

signi�cant drawback of the real-time comparison is the limited number of available real-time

observations. We have access to only 34 real-time observations for the baseline model and 15

for the production function model, which corresponds to the number of available vintages.

This introduces uncertainty into these estimates. In addition, both the output and signaling

variables are forecasted, which can introduce a bias. Finally, the average gap (OG
v

i ) is

calculated using the real-time gaps at t = y, while the average value of the signaling variable

xVi is based on the �nal vintage of data.

Table (1) present real-time correlation coe�cients for our example models (CORR T+1).

We �rst note that, similar as for the in-sample correlation, the correlation between the

signaling variable and the output gap is higher when we impose more stringent restrictions.
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This holds for the baseline model as well as for the production function model. We also

mention that in rare cases, a less stringent restrictions can lead to a higher correlation

coe�cient in T + 1,21 due to a small number of observations or due to a biased forecast.

We next note that, in our example data in Table (1), the baseline model output gap tends

to be better correlated with the signaling variable than the HP �lter or the EC's model. This

tends to hold for most variables and especially when we use more stringent constraints. Table

(2) shows that, for the baseline model, the inequality constrained gap is better correlated

than the HP �lter gap in T+1 in 37%/100%/75%, and in 50%/83%/85% compared to the

EC's gap, when the signal is rendered stationary by using the HP �ltering/demeaning with

�ve year moving average/di�erencing.

These shares are lower for the production function model. Exception being the case where

the signal is demeaned by di�erencing, where it is better correlated than the HP or the EC

output gap, regardless of the strength of restrictions (100%).

This section showed that the imposition of inequality constraints increased the correlation

between the output gap and desired variable in-sample, and tended to increase it in real-time,

especially in the case of the baseline model.

3.2.2 Revisions

The value of output gap is subject to uncertainty due to factors such as arrival of new data,

revisions of old data, forecast uncertainty, and model uncertainty.22 Since the �nal estimate

of the output gap can di�er from the real-time estimate used for policymaking, this section

compares the magnitude of such revisions.

In-sample analysis: We use the normalized root mean squared error (nRMSE) to express

the average size of revisions:

nRMSE =
1

N

NX
i=1

1

V

VX
v=1

RMSEi;v

�OGi;t1:::T;V
=

1

N

NX
i=1

1

V

VX
v=1

s
1

T�t1

PT

t=t1

�
OGi;t;v �OGi;t;V

�2

�OGi;t1:::T;V
(16)

21See, for example, online appendix, Table 6, variable LUR with smoothness constant set to 100.
22See for example Orphanides and Norden (2002), Orphanides and Van Norden (2005), Marcellino and
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Note that we normalize the revisions by the standard deviation of the �nal vintage output

gap (�OGi;t1;:::;T;V
). Various models have substantial variation in the size of the cyclical com-

ponent they produce due to di�erences in imposed parameters.23 By scaling the revisions,

we account for these di�erences. For example, for the inequality constrained output gap,

binding constraints can reduce the output gap's amplitude. Without this normalization, the

output gap with hard constraints would tend to perform better in terms of RMSE solely due

to its smaller amplitude. The drawback is that the standard deviation of the �nal vintage

output gap is itself uncertain and a small standard deviation tends to in
ate the normalized

RMSE.

In row REV of Table (1), we present the demonstrative nRMSE coe�cients. Among the

considered models, the HP �ltered output gap exhibits the smallest revisions. This obser-

vation holds not only in the provided example but also in general. The HP �lter model

is characterized by its parsimonious nature, as it does not require parameter estimation.

However, this simplicity occasionally results in inconsistencies with related macroeconomic

variables. Our proposed approach addresses this limitation by introducing marginal com-

plexity. Consequently, the revisions it produces are typically only slightly higher than those

of the HP �lter.

Note also that an increase in the strength of the restrictions tends to correspond to larger

revisions. This phenomenon can be attributed to two factors. Firstly, as the sample changes,

certain restrictions may become either non-binding or binding over time, and stronger binding

restrictions result in more substantial corrections to the output gap. Secondly, we normalize

the revisions by dividing them by the standard deviation of the �nal vintage output gap.

Consequently, stronger restrictions lead to a reduction in the standard deviation that is used

as a denominator in the calculation of nRMSE.

Row REV in Table (2) reveals that the inequality-constrained output gap consistently

exhibited lower stability compared to the HP �lter output gap, irrespective of the chosen de-

meaning procedure, smoothing constant, or strength of restrictions (indicated by the values

Musso (2011), Bundesbank (2014) and Mc Morrow et al. (2015).
23Such as the smoothing constant � or calibrated shock variances in the case of the EC's model.
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with 0% in row REV). Conversely, in approximately 70-75% of cases for the baseline model

and 40-50% of cases for the production function model, our model demonstrated greater sta-

bility than the EC's output gap. Our model combines the stability inherent in a simple model

like the HP �lter with the incorporation of information from additional variables, addressing

a limitation of the HP �lter model. Furthermore, our model yields smaller revisions compared

to the EC's model, as it remains relatively uncomplicated while maintaining consistency with

these additional variables.

Real-time analysis: To evaluate the performance of our model in real-time, we estimate

the nRMSE as follows:

nRMSE =
1

N

NX
i=1

RMSEi

�OGi;V
=

1

N

NX
i=1

s
1
V

VP
v=1

�
OGi;t=y;v �OGi;t=y(v);V

�2

�OGi;V
(17)

we express the average di�erence between the real-time estimate of the output gap (OGi;t=y(v);v)

and the estimate for the same year based on the �nal vintage (OGi;t=y(v);V ) with the root

mean squared error (RMSEi). We normalize this di�erence by dividing it by the standard

deviation of the output gap based on the �nal vintage (�OGi;V ). However, an important limi-

tation of this normalization process is the high level of uncertainty associated with �OGi;V , as

it is estimated on a sample of 17 observations for the baseline model and only 7 observations

for the production function model.24 Furthermore, due to its smaller value, �OGi;V has a ten-

dency to in
ate the normalized root mean squared error (nRMSE) of output gap estimates

that incorporate strong inequality restrictions. Therefore, we advise exercising caution when

interpreting these results.

In row REV T+1 of Table (1), we display demonstrative real-time nRMSE coe�cients. We

note that, for the baseline model with the unemployment rate as a signal, all three models

perform similar, with coe�cient values about 0.8. Inequality constrained gap achieves a

24The number of observations corresponds approximately to the number of available vintages divided by
two (since there are two vintages per year).
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slightly lower nRMSE of 0.79 for the models with loose restrictions (� = 0:25; 0:5; 1). For the

production function model, the coe�cients are more diverse. The HP �lter model achieves

the lowest nRMSE of 0.75. For loose restrictions, the inequality constrained output gap,

achieves a nRMSE which lies between the lowest nRMSE of the HP �lter gap and the EC's

output gap (min. 0.76). For strong restrictions, the size revisions, measured with nRMSE,

becomes higher (max. of 0.83) than that of the EC (0.75). This is because more stringent

restrictions reduce the denominator of nRMSE (�OGi;V ), which tends to in
ate the normalized

revisions.

Row REV T+1 in Table (2) displays the share of inequality constrained models, that have

smaller revisions than the HP �lter output gap or the EC's output gap, respectively. The

inequality constrained gap never outperforms it if HP �lter cycle of the signaling variable is

used to derive the restrictions (0%). It outperforms it in 20% to 30% of cases when the signal

is demeaned or di�erenced. Similar percentages hold when we compare it to the EC's output

gap. When it comes to the production function model, it almost never outperforms the HP

�lter model (0%-5%) but it often outperforms the EC's model (70%). In sum, the HP �lter

performs best, and the inequality constrained �lter performs similar to the EC's output gap.

Again, note that in this comparison we have not selected the best performing settings.

3.2.3 Forecasting

We will now compare the models based on their forecasting ability. To do so, we estimate an

autoregressive model with the output gap as an exogenous regressor:

xi;v;t = � +

pmaxX
p=1

�pxi;v;t�p + 
yi;v;t�1 + �t t = t1; :::; y � 1 (18)

x̂i;v;y = �̂ +

pmaxX
p=1

�̂pxi;v;y�1 + 
̂yi;v;y�1 t = y (19)

RMSE =
1

N

NX
i=1

RMSEi =
1

N

NX
i=1

vuut 1

V

VX
v=1

�
x̂i;v;y � xi;V;y

�
(20)
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where xi;v;t represent the signaling variable for country i in vintage v at period t. To ensure

stationarity, we apply di�erencing to the signaling variable.25 The model incorporates a

constant �, a lag polynomial of order p for the dependent variable xi;v;t�p, and the lagged value

of the output gap yi;v;t�1 as an exogenous predictor. Due to limited data availability, only one

lag of the output gap is included. The appropriate length of the autoregressive polynomial is

determined using the Bayesian Information Criteria (BIC), which favors parsimonious models

and performs well in small sample sizes. The maximum lag length is set to 4, and the model

is estimated for each country-vintage pair using in-sample data. Subsequently, the estimated

model is used to predict the real-time value of x̂i;v;y for vintage v = y; s using equation (19).

The imposition of inequality constraints has been found to increase the contemporaneous

correlation between the output gap and the signaling variable. Moreover, this increase in

correlation tends to be higher for models with tighter restrictions. This higher correlation

could improve the forecasting power of the output gap. On the other hand, since imposition

of inequality constraints increases correlation between xi;v;t�p and yi;v;t�1, which both enter

eq. 18 as regressors, this could decrease the forecasting performance. It could increase

multicolinearity and impose duplicate information into the forecasting model.26

In row FCSE of 1 we display RMSE for our example models. We �rst focus on the

baseline model. The HP �lter model performs the best, with the lowest RMSE of 12.03.

The EC's model exhibits the highest revisions, resulting in an RMSE of 14.4. The RMSE of

the inequality-constrained models falls between the HP �lter and EC's output gap. As the

strength of restrictions increases, the RMSE tends to approach the EC's RMSE (13.43), while

relaxing the restrictions brings it closer to the HP �lter's RMSE (12.28). For the Production

function model, the lowest RMSE is achieved with tight restrictions (� = 0:05), and the

highest with loose restrictions (� = 1). However, exceptions to this pattern are discussed in

the subsequent section on the Best Kappa.

On average, the HP �lter model exhibited favorable forecasting performance, and the

25We forecast the �rst di�erence of the in
ation rate, the growth rate of unemployment, and the level of
the capacity utilization rate.

26To elaborate, the imposition of constraints enhances the correlation between the output gap and the
selected variable. However, when conditioning on the lag of the variable, the partial correlation between
constrained output gap and the variable may decrease.
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inequality-constrained �lter tended to inherit these desirable properties. Speci�cally, when

the signal was di�erenced using the HP �lter, its own 5-year moving average, or by di�erenc-

ing, the inequality-constrained gap yielded smaller revisions compared to the HP �lter gap

in 27%, 20%, and 15% of cases, respectively (refer to Table (2)). In stark contrast, when

compared to the EC's model, these percentages were 57%, 93%, and 95%.

3.2.4 Signal-to-noise ratio - �

Table (3) presents a comparison of the performance, with respect to two signal-to-noise

ratios commonly used in practice (� = 10 and � = 100). The table includes results for the

inequality constrained gap, with rows corresponding to di�erent combinations of the signaling

variables tightness of restrictions �. The columns show the performance criteria (correlations,

revisions, forecast performance), the type of analysis (in-sample, real-time), and the model

type (baseline model - BM, production function model - PF). A value of 1 is assigned to a

speci�c combination if the model with � = 10 outperforms the same model with � = 100,

and zero otherwise. The last row reports the average share of instances where the model

with � = 10 outperformed the model with � = 100.

We focus on in-sample statistics, since they are more reliable and are less likely to su�er

from end point bias.

Correlations coe�cients are on average higher when the smoothing constant is equal to 10

(74% for the baseline model and 93% for the production function model). Setting � to a low

value results in a more volatile trend that captures most of the long-term and medium-term

frequency dynamics of the output. The cycle then consists of high-frequency part of the

output dynamics. It could be that the association between the signal is higher in the high

frequency spectrum, which is why an output gap with a low signal-to-noise ratio produces

higher correlation coe�cients.

Models with a high signal-to-noise ratio (100) generally exhibit superior performance in

terms of revisions compared to models with a low signal-to-noise ratio (10). For instance, in

the case of baseline models, those with a high signal-to-noise ratio outperform models with

a low signal-to-noise ratio in 82
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The results regarding forecasts are mixed. In the production function model, a low signal-

to-noise ratio proves to be more e�ective, surpassing the high signal-to-noise ratio in 97

When the cycle is used to demean the signal, a low signal-to-noise ratio demonstrates

superior performance. On the other hand, when employing the own 5-year moving average

to detrend the signal, a high signal-to-noise ratio works best. However, the results become

mixed when we utilize di�erencing as a means to detrend the signal.

Overall, a low signal-to-noise ratio tends to lead to stronger correlation between the

signal and the output gap, while a high signal-to-noise ratio aids in minimizing revisions.

The relationship between the signal-to-noise ratio and forecast accuracy is unclear.

3.2.5 Tightness of restrictions - �

Table (4) displays best performing settings for the tightness of restrictions parameter �. In

rows, we vary the signaling variable and signal to noise ratio �. Columns denote compar-

ison criteria (correlations, revisions and forecasts), type of model (baseline and production

function model) and type of comparison (in sample or real time).

Strong restrictions with � = 0:05 generally yield output gaps with the highest correlation

to the signaling variable, particularly in-sample for both the baseline and production function

models. However, soft restrictions with � = 1 occasionally result in better correlations in

real-time, albeit with limited sample certainty. It could also be the case that the utilization

of forecasted signaling variables to impose restrictions on the output gap, along with the

utilization of their true (�nal vintage) values to compute real-time correlations, favors models

with soft restrictions in instances where the forecasts prove to be incorrect.

When considering revisions, utilizing soft constraints with � = 1 is preferable. However,

this preference is likely in
uenced by our choice to employ the normalized RMSE instead of

the conventional RMSE for measuring the magnitude of revisions. In the Revisions section,

it is clari�ed that the normalized RMSE was selected to avoid favoring models that simply

reduce the amplitude of the output gap.

Finally, the �ndings regarding the forecasting properties are inconclusive. Approximately

two-thirds of the variables demonstrate a preference for soft constraints with � = 1 in
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the baseline model, while one-third of the variables bene�t from harder constraints (� =

0:05; 0:1; 0:05). In contrast, the production function model exhibits the opposite pattern,

with hard constraints leading to more accurate forecasts for three-quarters of the variables.

3.3 Best performing models

Based on the �ndings above, we conclude that softer restrictions (� = 1) tend to result in

smaller revisions and better forecasting accuracy, which occurs at the expense of a decreased

correlation between the output gap and related variables. However, for speci�c model com-

binations, stronger restrictions promote stability and forecast accuracy.

In order to identify the models that perform well across all of the criteria considered, we

compiled a table (Table (5)). It contains the models that most frequently outperformed either

the EC's or the HP �lter model. The �rst column of the table lists the di�erent comparison

criteria, the second column states the object of comparison (EC's output gap or HP �lter

gap). The �rst three rows de�ne the restricting variable (x), smoothness constant (�) and

the strength of restricitons (�).

The cells within the table contain either a zero or a one, with ones indicating that a given

model outperformed either the EC's model or the HP �lter. The left panel presents baseline

models and the right panel the production function models. The bottom row of the table

provides the total share of cases in which a out model outperformed the two alternatives.

The table includes models which performed best according to this criteria.

The best performing baseline models are those which utilize the unemployment rate to

derive the signal for the output gap. The unemployment rate was rendered stationary by

either di�erencing (LUR(1)) or by demeaning with own �ve year moving average (lur(-)

5yMA). Smoothness constant does not appear to be important since half of the models feature

low level (10) and half of the models a high level of smoothness (100). Top performing

models feature intermediate strength of restrictions (from 0.1 to 0.5), likely because the

stronger restrictions improve to correlation properties but harm the revision and forecast

properties. They outperform competing models in 80% of cases. We also note that these
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models outperformed the EC's model according to all the criteria. They could not outperform

the HP �lter model according to in-sample revisions and out-of-sample forecasts.

In contrast, the right panel of the �gure displays the results for the Production function

model. In the production function models the nominal variables a�ect the unemployment

rate's cycle. We did not �nd a clear advantage w.r.t. the signaling variable as the best

performing models include GDP de
ator as well as wage in
ation. Best performing models

featured a low tightness of restrictions (� = 0:5; 1), likely re
ecting good performance of the

HP �lter output gap when it comes to revisions and forecasting properties.

The overall �ndings suggest that for the baseline model, and according to the investigated

criteria, using unemployment-based signaling variables, made stationary by di�erencing or

by demeaning with own �ve year moving average, with medium tightness of restrictions tends

to produce best results. For the production function model, which tends to perform worse

than the baseline model, the results are less clear.

4 Conclusion

This paper proposed a novel method for estimating the output gap that addresses some of

the drawbacks associated with existing methods. Speci�cally, our approach involves imposing

inequality restrictions on the cycle of output, which allows for the output gap estimate to be

corrected only when it is inconsistent with related macroeconomic variables, such as in
ation

or unemployment. For example, if there are in
ationary pressures in the economy, the output

gap estimate will be constrained to be non-negative. In other periods, the output gap estimate

is left unrestricted.

This method o�ers several advantages over traditional output gap estimation methods.

Firstly, it corrects for inconsistencies in the output gap estimate only when necessary, reducing

the potential for over�tting and imposition of uncertain model assumptions. Additionally,

the method is easy to implement and interpret. Furthermore, the inequality restrictions

provide a more 
exible and intuitive framework for modeling the output gap, as they allow

for di�erent constraints to be imposed depending on the economic context.
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Previous literature often addresses the inconsistency of output gap estimates by adding

structural equations to the output gap model, which can increase complexity and require ad-

ditional parameters. This can lead to the need for arbitrary restrictions to obtain reasonable

estimates. Our approach, on the other hand, imposes inequality constraints on the output

gap, reducing the number of estimated parameters and ensuring that the resulting estimate

is consistent with the chosen macroeconomic variable. This allows for a simpler and more

stable estimation of the output gap.

The main limitation of our approach is that it may lead to inferior estimates if the true

data generating mechanism is similar to the more complex models that have been proposed

in the literature. However, in practice, it is often challenging to identify the true data

generating mechanism, as evidenced by the variety of output gap models that are available.

Furthermore, we demonstrate in a Monte Carlo simulation that even when a multivariate

model is the true data generating mechanism, our approach performs reasonably well.

Based on a large set of vintage data sets for the 28 EU countries, we conducted an

empirical investigation of the properties of our new approach. Our results indicate that

the inequality restrictions signi�cantly increase the correlation coe�cient between the vari-

able used for the restriction and the resulting output gap estimate. This suggests that the

inequality constraints successfully incorporate information from related macroeconomic vari-

ables into the output gap estimate. Additionally, we �nd that it can e�ectively reduce the

revisions in the output gap estimates, compared to more complex models. It can also improve

its forecasting power. Overall, empirical �ndings provide support for the usefulness of the

proposed approach in practical macroeconomic analysis and policy-making.
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Appendix

Model extension (1) - autoregressive cycle

The model presented in eq. (1)-(2b) can be extended with an autoregressive cycle. Following

Harvey and Jaeger (1993), we write the the model for the cycle ct as:

2
64ct
c�t

3
75 = �

2
64 cos�c sin�c

�sin�c cos�c

3
75
2
64ct�1
c�t�1

3
75+

2
64�t
��t

3
75 ; t = 1; :::; T (1)

where �t and �
�

t are two normally independent white noise disturbances with zero mean and

common variance �2�. �c represents the frequency of the cycle in radians.27 We restricted the

cycle periodicity to a range of (2; 16) years.2829

The autoregressive coe�cient � is also restricted to 0 � � < 1.30 This restriction ensures

the model's stationarity. The cycle has a zero mean with a variance of �2c =
�2�

1��2
.

The model in Eq. (1)-(2b), with the cycle as described above (Eq. (1)), is expressed in a

state-space format as follows:

�t =

2
66666664

tt

tt�1

ct

c�t

3
77777775
; Zt =

�
1 0 1 0

�
; T =

2
66666664

2 �1 0 0

1 0 0 0

0 0 �cos�c �sin�c

0 0 ��sin�c �cos�c

3
77777775

27The following identity relates radians (�c) to periodicity measured in years: �c = 2�
y
, where y is the

period in years.
28This restrictions is based on the assumption that the average business cycle lasts approx. 8 years.
29To implement this restriction, we express �c as: �c = Uc +

(Lc�Uc)� ~�c
1+ ~�c

, where Lc =
2�
2 represents the

lower bound and Uc =
2�
16 represents the upper bound. The model is maximized over ~�c.

30We implement this restriction by expressing � as: � = U�+
(L��U�)�~�

1+~� , where Lc = 0 represents the lower
bound and Uc = 0:9999 represents the upper bound. We maximize over ~�.
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R =

2
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0 0 1

3
77777775
; �t =

2
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where �t and ��t are two mutually independent white noise disturbances with a common

variance ��. This model can be unstable in empirical applications. Restrictions on �� are

(often) needed when series are short (less than 20 observations).

As with the HP �lter model, to obtain a meaningful solution, we need to restrict the

signal-to-noise ratio. Harvey and Trimbur (2008) showed that augmenting the HP �lter

model with a cycle cuts out more high-frequency movements compared to when the cycle is

assumed to be an irregular disturbance, like in the HP �lter model. Therefore, the original

signal-to-noise ratio � needs to be adjusted. They propose to set the noise-to-signal ratio in

the model with the cycle, at a value that causes its gain at 0:5 to match the gain of the HP

�lter at 0:5. Gain is the factor by which the �lter ampli�es frequencies. Frequencies with gain

values after 0:5 tend to be attenuated, while frequencies before it tend to be ampli�ed. An

HP �lter trend with � = 10/� = 100 tends to amplify frequencies at cycle lengths longer than

11/19.8 years and tends to attenuate higher frequencies. They show that the corresponding

signal-to-noise ratio for the model with the cycle is:

1

�c
= qc =

�
2sin

��0:5
2

��2 �
1 + �2 � 2�cos(�c)cos(�0:5)

��
1� �2

�
1 + �4 + 4�2cos2(�c)� 4

�
�� �3

�
cos(�c)cos(�0:5)+2�2cos(2�)

(2)

where �c, the frequency at which HP �lter gain is 0:5, is:31

�0:5 = 2sin�1
4

q
1
�

2
: (3)

Eq. (2) approximates the HP �lter's signal-to-noise ratio � with the signal-to-noise ratio

for a model with an autoregressive cycle. It holds in the absence of inequality constraints.

31Period, or cycle length, is then 2�
�0:5
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Therefore, this approximation is biased for the model with inequality constraints; neverthe-

less, we found that it creates cycles similar to the HP �lter solution. The results for the

output gap obtained with the above-de�ned signal-to-noise ratio are shown in Figure (6). As

observed from the �gure, they closely resemble the model where the cycle is irregular (see

Figure (3)).

An alternative option to calibrate � is to follow Borio et al. (2016). They calibrate the

signal-to-noise ratio by estimating the implied � for the resulting HP �lter estimates:

�emp = var(yt � tHP
t )=var(�tHP

t � �tHP
t�1) (4)

They note that empirical �emp tends to be higher because the cycle component �t is

autocorrelated, which in small samples creates a bias. This bias is less present in a model

that includes a more complex process for the cycle. The reduced form for the model for the

cycle above is ARMA(2,1) model and therefore likely does not include a bias on yearly data.
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Model extension (2): The production function model

Our speci�cation of the production function model follows the European Commission's ap-

proach:

Yt = TFPt � L�
t �K1��

t (5)

TFPt =
Yt

L�
t �K1��

t

(6)

Lt = POPWAt � PARTt � (1� URt)�HOURSt (7)

PARTt = 100�
EMPt
1�URt

POPWAt

(8)

The production function model speci�es that the output (Yt) is a function of labor (Lt),

capital (Kt), and total factor productivity (TFPt). Labor and capital are observable and

total factor productivity is calculated as a residual term: TFP = Yt=(L
� � K1��). In a

perfectly competitive market with constant returns to scale, the elasticity of output to labor

(�) is equal to the share of labor income in total output. This simple and transparent

function captures the fundamental concepts of production theory and is commonly used by

international institutions for comparative analysis.

Labor input is decomposed into several components, including the population of working

age (POPWAt), the labor market participation rate (PARTt), the unemployment rate (URt),

and the average annual hours worked per employee (HOURSt).

The output gap (GAPt) at time t is de�ned as the relative di�erence between the ac-

tual output (Yt) and the potential output (Y POTt) at time t, expressed as a percentage of

potential output:

GAPt =
Yt � Y POTt
Y POTt

(9)

Potential output is obtained by replacing inputs with their estimated trend values (with (6)

and (7) inserted in (5)):
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Y POTt = TFP t � (POPWAt � PARTHP
t � (1� URt)�HOURSHP

t )� �K1��
t (10)

The EC estimates the trend for total factor productivity (TFP t) using a dampened trend

model with an AR(2) model for the cycle. However, in some cases, this model fails to provide

sensible estimates and alternative models are used. Additionally, the cycle of total factor

productivity is used to explain the capacity utilization index (CUBS) in a country-speci�c

manner (see Planas et al. (2010) for more details). In our analysis, we will use a baseline

model for the TFP trend, which includes inequality constraints derived from the CUBS.

The trend unemployment rate is modeled as a double random walk with an AR(2) cycle,

which is equivalent to the HP �lter, according to the EC's speci�cation. In their model,

the cycle component of unemployment rate is used to explain either the acceleration of

in
ation in the NAIRU model or the acceleration of unit labor costs in the NAWRU model.

However, we will use our baseline model for the trend unemployment rate, which incorporates

inequality constraints based on various variables. Trends for variables superscripted with HP

are estimated with an HP �lter. Population of working age is not �ltered.
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Models

This table summarizes the baseline and production function models that were estimated. Each model is brie
y described, along with their related settings
and parameters, such as the signaling variable, stationarity-inducing transformations, signal-to-noise ratios, and strength of inequality constraints. Additional
details on these models can be found in sections Model, Model extensions, and Empirical application.
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Table 1: Demonstrative results

Baseline Model Production Function Model
x = LUR, di�erenced I(1), � = 10 x = DEF, 5y MA, � = 10

Criteria � Shadow Gap HP gap EC gap Shadow Gap HP gap EC gap

CORR

0.05 0.67 0.48 0.55 0.42 0.33 0.36
0.1 0.64 0.48 0.55 0.41 0.33 0.36
0.25 0.59 0.48 0.55 0.39 0.33 0.36
0.5 0.56 0.48 0.55 0.37 0.33 0.36
1 0.53 0.48 0.55 0.36 0.33 0.36

CORR T+1

0.05 0.56 0.50 0.41 0.21 0.19 0.29
0.10 0.56 0.50 0.41 0.21 0.19 0.29
0.25 0.54 0.50 0.41 0.21 0.19 0.29
0.50 0.53 0.50 0.41 0.20 0.19 0.29
1.00 0.52 0.50 0.41 0.20 0.19 0.29

REV

0.05 0.18 0.15 0.21 0.28 0.20 0.22
0.10 0.18 0.15 0.21 0.26 0.20 0.22
0.25 0.17 0.15 0.21 0.23 0.20 0.22
0.50 0.16 0.15 0.21 0.22 0.20 0.22
1.00 0.16 0.15 0.21 0.21 0.20 0.22

REV T+1

0.05 0.80 0.80 0.80 0.83 0.75 0.80
0.1 0.80 0.80 0.80 0.81 0.75 0.80
0.25 0.79 0.80 0.80 0.78 0.75 0.80
0.5 0.79 0.80 0.80 0.77 0.75 0.80
1 0.79 0.80 0.80 0.76 0.75 0.80

FCSE

0.05 13.43 12.03 14.04 1.116 1.133 1.219
0.1 13.10 12.03 14.04 1.119 1.133 1.219
0.25 12.67 12.03 14.04 1.124 1.133 1.219
0.5 12.46 12.03 14.04 1.127 1.133 1.219
1 12.28 12.03 14.04 1.130 1.133 1.219

This table presents demonstrative results for two models chosen for their strong performance across

all �ve comparison criteria (see section Best performing models). The left panel shows outcomes

of the baseline model, using the di�erenced unemployment rate for constraints. The right panel

displays results of the production model, using a 5-year moving average demeaned GDP de
ator for

constraints (with � set to 10). The �rst column lists the comparison criteria: in-sample correlation

(CORR, see eq. (14)), real-time correlation (CORR T+1, see eq. (15)), in-sample output gap

revisions (REV, see eq. (16)), real-time output gap revisions (REV T+1, see eq. (17)), and

forecast errors (FCSE, see eq. (20)). � represents the tightness of restrictions for the IC gap.

Results are also shown for the European Commission's (EC gap) and HP �lter gap (HP gap).

We report average expressed from all the EU28 countries and vintages (baseline model : from Spring

2004 to Spring 2021, production function model : from Autumn 2014 to Spring 2021). The models

used data from 1980 onwards or later, depending on availability.

Table 2: Summary of results

Baseline Model Production Function Model
Criteria Type IC gap >HP gap IC gap > EC gap IC gap > HP gap IC gap > EC gap

CORR
Cycle 100% 100% 100% 100%
Demeaned 100% 43% 100% 35%
Di�erenced 100% 33% 100% 65%

CORR T+1
Cycle 37% 50% 25% 5%
Demeaned 100% 83% 40% 0%
Di�erenced 75% 85% 100% 100%

REV
Cycle 0% 73% 0% 40%
Demeaned 0% 73% 0% 50%
Di�erenced 0% 75% 0% 50%

REV T+1
Cycle 0% 3% 0% 70%
Demeaned 30% 30% 5% 70%
Di�erenced 20% 31% 5% 70%

FCSE
Cycle 27% 57% 75% 100%
Demean 20% 93% 35% 95%
Di�erentiated 15% 95% 15% 15%

The table presents percentages of cases where the inequality constrained output gap exhibited better performance

compared to the HP �lter (IC gap>HP gap) or the European Commission's output gap (IC gap>EC gap), based

on the following criteria: the in-sample correlation coe�cient between the signaling variable and the output gap

(CORR, see eq. (14)), the real-time correlation coe�cient (CORR T+1, see eq. (15)), the size of in-sample output

gap revisions (REV, see eq. (16)), the size of real-time output gap revisions (REV T+1, see eq. (17)), and the size of

forecast errors (FCSE, see eq. (20)). These results represent the average across all considered smoothness parameters

(� = 10; 100), restricting variables (CPI in
ation, wage in
ation, unemployment rate, or capacity utilization index),

and the tightness of restrictions (� = 0:05; 0:10; 0:25; 0:50; 1:00). These averages were expressed from the data for all

the EU28 countries and vintages (baseline model : from Spring 2004 to Spring 2021, production function model : from

Autumn 2014 to Spring 2021). The analysis separately presents results when the restricting variable was detrended by

HP �ltering (Cycle), demeaned with its own 5-year moving average (Demeaned), or di�erenced (Di�erenced).
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Table 3: Performance of IC Gap estimates - by signal-to-noise ratio (�)
� = 10 > � = 100

CRITERIA Correlations Revisions Forecasts
MODEL BM PF BM PF BM PF
TYPE In sample Real-time In sample Real-time In sample Real-time In sample Real-time Real-time Real-time
x �

CPI cycle 0.05 1 1 1 1 0 0 0 0 1 1
CPI cycle 0.1 1 1 1 1 0 0 0 0 1 1
CPI cycle 0.25 1 0 1 0 0 0 0 0 1 1
CPI cycle 0.5 1 0 1 0 0 0 0 0 1 1
CPI cycle 1 1 0 1 0 0 0 0 0 1 1
WAGE cycle 0.05 1 0 1 1 0 0 0 0 1 1
WAGE cycle 0.1 1 0 1 0 0 0 0 0 1 1
WAGE cycle 0.25 1 0 1 0 0 0 0 0 1 1
WAGE cycle 0.5 1 0 1 0 0 0 0 0 1 1
WAGE cycle 1 1 0 1 0 0 0 0 0 1 1
LUR cycle 0.05 0 0 1 0 1
LUR cycle 0.1 0 0 1 0 1
LUR cycle 0.25 0 0 1 0 1
LUR cycle 0.5 0 0 1 0 1
LUR cycle 1 0 0 1 0 1
CPI (-) 5yMA 2 1 0 1 0 0 0 0 0 0 1
CPI (-) 5yMA 3 1 0 1 0 0 0 0 0 0 1
CPI (-) 5yMA 4 1 0 1 0 0 0 0 0 0 1
CPI (-) 5yMA 5 0 0 1 0 0 0 0 0 0 1
CPI (-) 5yMA 6 0 0 1 0 0 0 0 0 0 1
WAGE (-) 5yMA 2 1 0 1 0 1 0 0 0 0 1
WAGE (-) 5yMA 3 1 0 1 0 0 0 0 0 0 1
WAGE (-) 5yMA 4 1 0 1 0 0 0 0 0 0 1
WAGE (-) 5yMA 5 1 0 0 0 0 0 0 0 0 1
WAGE (-) 5yMA 6 0 0 0 0 0 0 0 0 0 1
LUR (-) 5yMA 2 0 0 0 0 0
LUR (-) 5yMA 3 0 0 0 0 0
LUR (-) 5yMA 4 0 0 0 0 0
LUR (-) 5yMA 5 0 0 0 0 0
LUR (-) 5yMA 6 0 0 0 0 0
CPI I(2) 0.05 1 0 1 1 0 0 0 0 1 0
CPI I(2) 0.1 1 0 1 1 0 0 0 0 1 1
CPI I(2) 0.25 1 1 1 1 0 0 0 0 0 1
CPI I(2) 0.5 1 1 1 1 0 0 0 0 0 1
CPI I(2) 1 1 1 1 1 0 0 0 0 0 1
WAGE I(2) 0.05 1 1 1 1 0 0 0 0 0 1
WAGE I(2) 0.1 1 1 1 1 0 0 0 0 0 1
WAGE I(2) 0.25 1 1 1 1 0 0 0 0 0 1
WAGE I(2) 0.5 1 1 1 1 0 0 0 0 0 1
WAGE I(2) 1 1 1 1 1 0 0 0 0 0 1
LUR I(1) 0.05 1 1 1 0 0
LUR I(1) 0.1 1 1 0 0 1
LUR I(1) 0.25 1 1 0 0 1
LUR I(1) 0.5 1 1 0 0 1
LUR I(1) 1 1 1 0 0 1
CUBS 0.05 1 1 0 0 0
CUBS 0.1 1 1 0 0 1
CUBS 0.25 1 1 0 0 1
CUBS 0.5 1 1 1 0 1
CUBS 1 1 1 1 0 1
AVERAGE 74% 40% 93% 43% 18% 0% 0% 0% 50% 97%

In this table we compare the performance of the inequality constrained output gap model with di�erent signal-to-noise ratios (�). The table includes

comparison criteria, type of analysis (in-sample or real-time), and the model used (baseline model or production function model). The �rst two columns specify

the restricting variable and its transformation (x) and the tightness of restrictions (�). Entries with 1 indicate that the model with � = 10 performed better

than the model with � = 100, while 0s indicate the opposite. The last row reports the average share when the model with � = 10 outperformed the model

with � = 100. The average is calculated over EU28 countries and vintages (baseline model : from Spring 2004 to Spring 2021, production function model : from

Autumn 2014 to Spring 2021).
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Table 4: Performance of IC Gap estimates - by tightness of restrictions (�)
best performing �

CRITERIA Correlations Revisions Forecasts
MODEL BM PF BM PF BM PF
TYPE In sample Real-time In sample Real-time In sample Real-time In sample Real-time Real-time Real-time
x �

DEF cycle 10 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 0.05
WAGE cycle 10 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 0.50 0.05
LUR cycle 10 0.05 1.00 1.00 1.00 1.00
DEF cycle 100 0.05 0.10 0.05 1.00 1.00 1.00 1.00 1.00 0.10 0.05
WAGE cycle 100 0.05 0.50 0.05 1.00 1.00 1.00 1.00 1.00 0.05 0.05
LUR cycle 100 0.05 1.00 1.00 1.00 1.00
DEF (-) 5yMA 10 0.05 0.05 0.05 0.10 1.00 1.00 1.00 1.00 0.10 0.05
WAGE (-) 5yMA 10 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUR (-) 5yMA 10 0.05 0.05 1.00 1.00 1.00
DEF (-) 5yMA 100 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 0.05 0.05
WAGE (-) 5yMA 100 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LUR (-) 5yMA 100 0.05 0.05 1.00 0.50 1.00
DEF I(2) 10 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 0.10 0.50
WAGE I(2) 10 0.05 0.05 0.05 0.10 1.00 1.00 1.00 1.00 0.50 0.05
LUR I(1) 10 0.05 0.05 1.00 0.50 1.00
CUBS 10 0.05 1.00 1.00 1.00 1.00
DEF I(2) 100 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 1.00
WAGE I(2) 100 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 1.00 0.05
LUR I(1) 100 0.05 0.05 1.00 0.50 1.00
CUBS 100 0.05 1.00 1.00 1.00 1.00

In this table we compare the performance of the inequality constrained output gap using di�erent values of the tightness of restrictions parameter (�).

The �rst two columns specify the restricting variable and its transformation (x), along with the signal-to-noise ratio (�). The �rst three rows indicate the

comparison criteria, the type of analysis (in-sample or real-time), and the model (baseline model or the production function model). Numeric entries in the

table indicate the optimal value of � for each variable, signal-to-noise ratio, criteria, and model.
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Table 5: Best performing models

Baseline Model Production Function Model
x lur (-) 5yMA lur (-) 5yMA LUR I(1) LUR I(1) DEF cycle WAGE cycle DEF (-) 5yMA
� 100 100 10 10 10 100 10
� 0.1 0.25 0.25 0.5 1 1 0.5

CORR
IC > HP 1 1 1 1 1 1 1
IC > EC 1 1 1 1 1 1 1

CORR T+1
IC > HP 1 1 1 1 1 0 1
IC > EC 1 1 1 1 0 1 0

REV
IC < HP 0 0 0 0 0 0 0
IC < EC 1 1 1 1 1 1 1

REV T+1
IC < HP 1 1 1 1 0 0 0
IC < EC 1 1 1 1 1 1 1

FCSE
IC < HP 0 0 0 0 1 1 1
IC < EC 1 1 1 1 1 1 1

AVERAGE 80% 80% 80% 80% 70% 70% 70%

In this table, we present the models that performed the best on average, according to the considered performance criteria (CORR,

CORR T+1, REV, REV T+1, FCS ). The variable x indicates the signaling variable, � represents the smoothness constant, and �

denotes the tightness of restrictions. The left-most column indicates the comparison criteria and models being compared (IC - inequality

constrained output gap, HP - HP �lter output gap, EC - European Commission output gap). The last row labeled AVERAGE shows

the share of instances in which the selected model outperformed the EC's and the HP �lter model, denoted by entries with a value of 1.
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Figures

Figure 1: Monte Carlo experiment, correct signal

Figure displays RMSEs (root mean square errors) for three models: the multivariate model (red circles, see eq. (10-12)), HP �lter (blue circles,

see eq. (1-2b)) and the inequality constrained model (orange circles, see eq. (7). Multivariate model is the true model which generated the

data. Data generating mechanism is described in section Small sample properties - Monte Carlo veri�cation. RMSE is a measure of the di�erences

between the true (simulated) cycle and the cycle re-estimated from simulated data.

Figure 2: Monte Carlo experiment, false signal

Figure displays RMSEs (root mean square errors) for three models: the multivariate model (red circles, see eq. (10-12)), HP �lter (blue circles,

see eq. (1-2b)) and the inequality constrained model (orange circles, see eq. (7). For all models we replaced the variable which generated the

data with an irrelevant variable (the false signal case). Details on the data generating mechanism is described in section Small sample properties -

Monte Carlo veri�cation. RMSE is a measure of the di�erences between the true (simulated) cycle and the cycle re-estimated from simulated data.
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Figure 3: Output Gap, EU 27, Autumn 2017

Figure displays output gaps with varying degrees of tightness of constraints. The restricting variable is the cycle of GDP de
ator. � stands for

signal-to-noise ratio, � for the strength of constraint. Lower � implies a tighter constraint (see eq. (9) for more details). We plot the following

lines: dotted black line is the EC's output gap estimate (vintage Autumn 2019), black line with square marker is the output gap with (hard)

inequality constraint, gray line is the output gap with (soft) inequality constraint (� de�nes the degree of tightness), gray line with triangle

marker is the unconstrained output gap (it is equivalent to an HP �lter gap with signal-to-noise ratio � = 100). Shaded areas are periods in

which inequality constraint was binding the value of the output gap with (hard) inequality constraint. Data vintage is Autumn 2019, yearly data

from 1995-2021 for EU27.

Figure 4: GDP de
ator and cycle, EU 27, Autumn 2017

The Figure displays the GDP de
ator and its cycle estimated using the HP �lter with a signal-to-noise ratio of � = 100. The shaded areas

represent periods where the inequality constraint was binding in the case of the output gap with a hard inequality constraint. The data vintage is

Autumn 2019 and the yearly data covers the period from 1995-2021 for the EU27.
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Figure 5: Potential output, EU 27, Autumn 2017

The �gure illustrates the impact of varying the degree of tightness of the inequality constraint on potential output, with the cycle of GDP de
ator

as the restricting variable. The signal-to-noise ratio is denoted by �, the strength of the constraint �. The following lines are shown in the plot:

the dotted black line represents the European Commission's estimate of potential output (vintage Autumn 2019), the black line with square

marker represents potential output with a hard inequality constraint, the gray line represents potential output with a soft inequality constraint

(where the degree of tightness is de�ned by �), and the gray line with triangle marker represents the unconstrained potential output (equivalent

to an HP �lter trend with signal-to-noise ratio � = 100). Shaded areas indicate periods where the inequality constraint was binding for the output

gap with a hard inequality constraint. The data used in the plot is based on the Autumn 2019 vintage, with yearly data from 1995-2021 for the

EU27.

Figure 6: Output Gap model with an AR cycle, EU 27, Autumn 2019

This �gure shows the output gap under varying degrees of inequality constraint. The cycle of GDP de
ator is
the variable that is constrained, with � representing the signal-to-noise ratio and � the strength of constraint.
Lower values of � indicate a tighter constraint (see eq. (9) for more details). The lines are as follows:
the dotted black line shows the EC's output gap estimate (vintage Autumn 2019), the black line with

square marker shows the output gap with (hard) inequality constraint, the gray line shows the output
gap with (soft) inequality constraint (with � de�ning the degree of tightness), and the gray line with

triangle marker shows the unconstrained output gap (equivalent to an HP �lter gap with signal-to-noise
ratio � = 100). The shaded areas indicate periods in which the inequality constraint was binding for the
case of the output gap with (hard) inequality constraint. The data is based on the vintage Autumn 2019 and
covers yearly data from 1995-2021 for EU27.
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