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1. Introduction 
 

Gross Domestic Product (GDP) measures economic output but fails to account for the negative 
environmental impact caused by production. For instance, it overlooks greenhouse gas (GHG) 
emissions, a primary contributor to climate change (IPCC, 2013). In response to growing 
concern about climate change, there has been a shift towards measures of economic 
performance that include environmental impacts. We develop such measure and use it to 
evaluate eco-efficiency for a panel of European Countries from 2000 to 2018. 

Eco-efficiency3 (EE hereafter) is defined by the World Business Council for Sustainable 
Development (WBCSD, 2006) as the production of goods and services with minimal 
environmental impacts. A key measure of EE is the ratio of GDP to GHG emissions, referred to 
as carbon productivity (e.g. Kaya and Yokobori, 1993; Pan, 2022). It measures the quantity of 
goods and services produced (GDP) per unit of GHG emitted, indicating how well a country 
balances economic performance with negative environmental impacts. In this study, an eco-
efficient country is defined as the one achieving the highest output per unit of GHG emissions. 
Deviations from this optimal level represent eco-inefficiencies or eco-efficiency gaps. GHG 
emissions are measured using the national inventory concept, which includes emissions from 
both domestic activities and sales to non-residents. 

This paper estimates EEs using OECD, Eurostat, Penn World, and International Energy Agency 
data. We extend the work of Robaina-Alves et al. (2015), who estimated EE gaps for European 
countries. We update the time span of the data and considering an alternative estimation 
framework. A longer time span of data improves the precision of the obtained estimates.  The 
alternative econometric framework enables us to account for country-specific heterogeneity, 
which, if disregarded, can lead to invalid statistical tests and conclusions based on them.      

Furthermore, our analysis examines the role of technological and policy factors in explaining 
eco-efficiency gaps. While previous studies by Kumbhakar et al. (2022), Liang et al. (2015), 
Wang et al. (2011), and Lee and Park (2017) have explored the impact of factors such as 
innovation, stricter environmental regulation, and energy taxes on eco-efficiency and 
emissions, they have done so individually, without considering their joint impact. This study 
adopts a joint modeling approach, focusing on three key factors: 1) The Relative Advantage in 
Environment-related Technologies Index (RAET hereafter), indicating the adoption of 
environmentally friendly technologies; 2) The Environmental Policy Stringency Index (EPS 
hereafter), assessing the strictness of a country's environmental policies; and 3) The GHG 
emission tax rate that measures the economic incentives for improving EE. Finally, we 
empirically test the hypothesis that an increase in a factor leads to a reduction in eco-
efficiency gaps. 

To estimate time-varying country-level eco-efficiency gaps, we use the Greene’s (2005) fixed 
effect stochastic frontier model. This model has two advantages: it accounts for heterogeneity 

                                                            
3 Eco-efficiency is described as “being achieved by the delivery of competitively priced goods and services that 
satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource 
intensity throughout the life-cycle to a level at least in line with the Earth's estimated carrying capacity”(WBCSD, 
2006,p.16). 
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across countries by including country fixed effects. Additionally, this model enables the 
identification of factors contributing to eco-efficiency gaps across countries. Specifically, it 
includes an inefficiency term that measures the difference between a country's current GDP 
per unit of GHG emissions and the highest achievable GDP per unit of GHG emissions. This 
difference highlights how much a country can improve its GDP relative to its GHG emissions. 
The inefficiency term also isolates the portion of the gap due to factors that can be managed 
or improved. This allows us to examine the factors (i.e., RAET, EPS, and GHG emission tax rate) 
that contribute to variations in the eco-efficiency gaps. 

We provide a rank of eco-efficiency gaps for European countries from 2000 to 2018. Sweden, 
Denmark, Italy, Norway, Luxembourg frequently ranked as the most eco-efficient countries, 
whereas Poland, Estonia, Slovak Republic, and the Czech Republic generally ranked as the least 
eco-efficient. We also find that countries with higher EPS Index and GHG emission tax rate 
tend to exhibit lower EE gaps. However, the efficiency gain diminishes as these variables 
increase.  

Based on our estimates, we calculate the implications of reducing eco-efficiency gaps for the 
environment in terms of potential carbon savings (i.e. CO2 equivalent GHG emissions savings). 
We find that the environmental gains from closing eco-efficiency gaps between best and worst 
performing countries could lead to a reduction in carbon emissions by 75 million metric 
tonnes.  This reduction is significant, equivalent to the carbon dioxide emissions of 9.7 million 
U.S. households or eight years of energy consumption for Parisian households. 

The rest of this paper is structured as follows: Section 2 outlines the methodology and 
estimation process. Sections 3 and 4 detail the data and results, respectively. Finally, in Section 
5 we provide our conclusions. 

2. Methodology 
 

Efficiency analysis rates production or economic entities, like countries, on a scale from 0 to 
1, where 1 represents full efficiency. The primary methods for this are Data Envelopment 
Analysis (DEA) and Stochastic Frontier Analysis (SFA). DEA is a non-parametric method with 
no stochastic components, while SFA is parametric, including specific assumptions and 
stochastic error components. The choice between these methods depends on the objectives 
of the study and the quality of the data available. In this study, we opted for the panel data 
stochastic frontier (SF) model with true fixed effects, as introduced by Greene in 2005 since it 
allows for estimating the impact of specific policy and technological factors on variations in 
eco-efficiency (EE) aps across our sample countries.4  

We focus on EE, defined as the ratio of GDP to GHG emissions, to assess how efficiently a 
country generate economic value per unit of GHG emissions. EE improvement can be achieved 
by increasing GDP without raising emissions, reducing emissions without lowering GDP, or 
both. In our analysis, we model EE based on the contributions of labour, capital, and a diverse 
energy portfolio to maximizing goods and services production per unit of GHG emissions. This 

                                                            
4 It is important to note that this model has a potential disadvantage. Although the maximum likelihood estimates 
of model parameters are consistent, the estimates of error variances remain inconsistent unless both the number 
of time periods and panel units increase indefinitely (incidental parameters problem) (Kutlu et al. 2019). 
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energy mix, including nuclear, renewable, and traditional energy sources, directly impacts a 
country's EE. Proper management of these resources influences the GDP a country can 
produce per GHG unit, reflecting its EE and contribution to a low-carbon economy. We also 
include a time trend variable to account for shifts in the production function and technological 
advancements over time.5  

We employ Greene's (2005) fixed-effects panel stochastic frontier model to analyze factors 
influencing the evolution of GDP relative to GHG emissions, beyond countries’ control, such 
as climate-related conditions. The model incorporates country fixed effects to control for 
these external factors. Additionally, SFA identifies deviations from the optimal GDP per GHG 
emission unit. It attributes these deviations not only to random noise or country-specific 
effects but also to inefficiencies. Inefficiency here means suboptimal resource utilization, 
achieving less output than possible. This approach enables benchmarking by comparing each 
country’s EE against those achieving best practices with similar inputs, thus identifying 
underperformance due to gaps between potential and actual output. 

Our model captures three key components: 1) The unobserved country-specific effect 𝜇𝜇𝑖𝑖 
accounts for fixed characteristics of each country; 2) The time-varying inefficiency 𝑢𝑢𝑖𝑖𝑖𝑖 reflects 
inefficiency levels of a country over time; 3) The statistical noise 𝑣𝑣𝑖𝑖𝑖𝑖 represents random 
variation. The estimation of our model relies on assumptions about the distribution of these 
components, as detailed in the works of Kumbhakar and Lovell (2000), Greene (2005), and 
Kumbhakar et al. (2015). The true fixed effect stochastic frontier (SF) model employed in our 
study is written as follows: 

𝑙𝑙𝑙𝑙(𝑌𝑌)𝑖𝑖𝑖𝑖 =   𝛽𝛽0 + �𝛽𝛽𝑗𝑗
𝑗𝑗=1

𝑙𝑙𝑙𝑙 𝑋𝑋𝑗𝑗𝑖𝑖𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡
���������������������

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹

+ 𝜇𝜇𝑖𝑖  + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖(𝒛𝒛𝑖𝑖𝑖𝑖)                              (1) 

 
       

𝑣𝑣𝑖𝑖𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝑣𝑣2� 

                                                   

𝑢𝑢𝑖𝑖𝑖𝑖(𝒛𝒛𝑖𝑖𝑖𝑖)~𝑁𝑁+6� 0,𝜎𝜎𝑢𝑢2 (𝒛𝒛𝑖𝑖𝑖𝑖)�������
𝑝𝑝𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑢𝑢𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝑚𝑚

�where 𝜎𝜎𝑢𝑢2(𝒛𝒛𝑖𝑖𝑖𝑖) = 𝜎𝜎𝑢𝑢2exp �𝜃𝜃0 + 𝜃𝜃′𝒛𝒛𝑖𝑖𝑖𝑖�. 

 

In Equation 1, i indexes countries and t indexes years. The dependent variable Y denotes the 
output emissions ratio (GDP/GHG), that is, EE. X is a vector of dependent variables which 
consists of energy, which is further broken down into nuclear, renewable, and brown energy7 
sources, labour and capital inputs. The vector of coefficients, β, reflects the contribution of 
each variable to EE. The country-specific fixed effect is denoted by 𝜇𝜇, capturing time-invariant 

                                                            
5 Instead of analyzing the share of fossil fuel energy or manufacturing's GDP contribution to explain GHG 
emissions and EE, our study directly examines energy inputs—categorised as brown, nuclear, and renewable. 
This approach, coupled with country-specific fixed effects, indirectly captures each country's economic structure, 
providing a comprehensive analysis of energy use and emission sources. 
6 In a standard normal distribution, variance changes do not affect the mean. But when truncated, a rise in 
𝜎𝜎𝑢𝑢2(𝒛𝒛𝑖𝑖𝑖𝑖) correlates with an increased mean of the truncated 𝑢𝑢𝑖𝑖𝑖𝑖 . 

7 The brown energy is the sum of coal, peat, oil shale, crude, oil products, natural gas, electricity, and heat. 
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characteristics of each country. The term 𝑣𝑣 represents the conventional random noise, 
assumed to be normally distributed, which accounts for statistical noise. The inefficiency term, 
u, measures the loss from maximum potential output, implying that the observed level of 
output is at most equal to the potential level. This inefficiency is always non-negative and is 
modeled to follow a non-negative half-normal distribution(denoted as 𝑁𝑁+)7F

8.  

Additionally, this study investigates the factors that may explain differences in EE across 
countries. We model the variance in eco-inefficiency distribution using variables included in 
vector z9, as described by Kumbhakar et al. (2015). These variables comprise the Relative 
Advantage in Environment-related Technologies (RAET) index, the Environmental Policy 
Stringency (EPS) index, and the energy tax revenue per unit of emission (GHG emission tax 
rate). We explore these factors to understand their impact on the variance in EE gap across 
different countries. 

Eq. (1) is estimated using Maximum Likelihood (ML) estimator, which is based on a nonlinear 
optimization, resulting in sample average eco-inefficiency. Finally, country-year specific eco-
inefficiency score are obtained using conditional mean estimator proposed by Jondrow et al. 
(1982). The corresponding country-specific EE scores are then calculated as 
𝑡𝑡𝑒𝑒𝑝𝑝(−𝑡𝑡𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝑖𝑖) (Kumbhakar and Lovell, 2000).  

Regarding the impact of a change in the determinants (variables included in vector 𝒛𝒛), on EE 
gaps marginal changes are calculated using a post estimation procedure. Marginal effect 
represents the derivative of eco-inefficiency with respect to its determinant and provides 
insight into how changes in the determinant affect the EE gaps of a country.  

3. Data 
 

Our dataset includes GDP, GHG emissions, and inputs to production which are labour, capital 
and diverse energy mix. The dataset cover yearly observations for 22 European countries10 
from 2000 to 2018. 

GDP is expressed in chain linked volumes with base year 2017, measured in million Euro. GHG 
emissions are based on the national inventory concept, rather than the national accounts 
concept. While the national accounts approach captures emissions linked to the consumption 
activities of residents only, the national inventory concept also includes emissions from sales 
to non-residents —for example, fuel sales to foreign drivers. We use emissions data based on 
the national inventory concept because we aim to measure EE and the impact of policies on 
GDP per unit of total emissions, not just those attributable to domestic consumption. The 
inventory data covers emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 
perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), sulphur hexafluoride (SF6) and nitrogen 
trifluoride (NF3). To construct a single emissions indicator, all gases are converted into CO₂-
                                                            
8 𝑁𝑁+(. ) in Eq.(1) indicates that 𝜂𝜂 and 𝑢𝑢 have a one-sided and non-negative distributions originated from a 
standard normal distribution.  
9 The pre-truncation distribution of inefficiency refers to the distribution of inefficiency scores before the zero 
lower bound (non-negative assumption) is applied. In SFA applications, it is common to parametriseed the pre-
truncation distribution of inefficiency term (see e.g., Badunenko and Kumbhakar (2017)). 
10 The countries covered are: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, 
Greece, Hungary, Ireland, Italy, Luxemburg, Netherlands, Norway, Poland, Portugal, Slovak Republic, Slovenia, 
Spain, Sweden, and United Kingdom. 
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equivalent emissions. 11 Both GDP12 and GHG emissions data are obtained from Eurostat. The 
independent variables are inputs to production: energy (E), capital (K), and labour (L). Energy 
data is provided by International Energy Agency (IEA) World Energy Balances13. Energy is 
disaggregated into three categories according to its source (i) nuclear source, (ii) renewable 
energy, and (iii) brown energy. The latter is defined as the sum of coal, peat, oil shale, crude, 
oil products, natural gas, electricity,14 and heat. Data on capital and labour are obtained from 
Penn World Table and, respectively, measure capital stock at constant 2017 national prices (in 
million 2017 Euro) and total labour force. 

Data sources for determinants of EE gaps included in this study are as follows. Environmental 
Policy Stringency Index (EPS) is a measure developed by the OECD. This is an internationally 
comparative and country-specific index which serves as a crucial benchmark to assess the 
strictness of environmental policies across different countries. The EPS is defined as the extent 
to which these policies levy an explicit or implicit cost on environmentally harmful behaviors 
and pollution. The index draws from the stringency levels of 13 policy mechanisms 
predominantly concerning climate change and air pollution. With a scale ranging from 0, 
indicating the least stringency, to 6, marking the highest level of stringency, the EPS presents 
a comprehensive picture of environmental policy enforcement.15 

The Relative Advantage in Environment-Related Technologies (RAET) index, developed by 
OECD, measures a country’s specialization and competitiveness in environmental innovation 
compared to the global value. This index essentially captures how much a country leads or 
lags in the global race for environmental innovation. It is calculated based on the proportion 
of a country’s environment-related inventions to all its inventions, relative to the same ratio 
globally. An index of one indicates a country’s green innovation matches with the global value, 
while an index above one indicates the country has a relative technological advantage in 
environment-related technologies. This assessment covers diverse technological domains, 
such as environmental management and climate change mitigation technologies.  

Finally, GHG emissions’ tax rate is defined as the ratio of energy tax revenue to unit of GHG 
emissions. The energy tax revenue is obtained from Eurostat. The base for energy tax is (i) 
energy products for transport purposes (Unleaded petrol, Leaded petrol, Diesel, Other energy 
products for transport purposes (e.g., natural gas and fuel oil), (ii) energy products for 
stationary purposes (light and heavy fuel oil, natural gas, coal, coke, biofuel, electricity 
                                                            
11 These GHG emissions arise from various sources: (i) Energy Production: GHGs from the combustion of fossil 
fuels and other energy generation processes. (ii) Industrial Processes: Emissions from manufacturing activities, 
such as cement production. (iii) Product use: GHGs released during the use of specific products, like aerosols. (iv) 
Agriculture: Emissions related to livestock, manure management, fertilizer application, and other agricultural 
practices. (v) Waste Management: GHGs generated through waste treatment processes, such as emissions from 
landfills. 
12 GDP is obtained from section annual National Accounts (NAMA_10_GDP) and data on GHG emissions is 
downloaded from environment and energy section (ENV_AIR_GGE) retrieved April 2021. 
13 https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics. 
14  International Energy Agency (IEA) World Energy Balances includes electricity as a source of energy supply, 
where electricity presents net of imported and exported electricity from various sources. It is included in the 
brown energy category since fossil fuels remain the most common source of electricity production.  
15 A high EPS score may directly or indirectly encourage the adoption of more efficient, less polluting operations 
as they may put explicitly or implicitly price on polluting or environmentally harmful behavior. However, it is 
crucial to note that the EPS is a measure of policy stringency and not a direct reflection of environmental 
efficiency or innovation. 
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consumption and production, district heat consumption and production and other energy 
products for stationary use), and (iii) GHGs (e.g., the carbon content of fuels, emissions of 
GHGs including proceeds from emission permits recorded as taxes in the National Accounts 
(See regulation (EU) No 691/2011 of the European Parliament and of the Council of July 2011 
on European environmental economic accounts). GHG emission tax rate can be used as a 
policy tool to promote EE. A higher GHG emissions’ tax rate may incentivize the adoption of 
cleaner technologies and a transition to less polluting energy sources. This, in turn, can lead 
to a reduction in emissions and thereby increase long-term EE. The correlation coefficients 
between EPS index, RAET index, and GHG emission tax rate are presented in Table 1 (below). 
As one sees, these determinants are not highly correlated. Table 1 in appendix presents the 
yearly average summary statistics of the sample over the period 2000-2018. 
 
Table 1. Correlation coefficients between the determinants of time-varying EE 
 𝐆𝐆𝐆𝐆𝐆𝐆 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐞𝐞 𝐄𝐄𝐄𝐄𝐄𝐄 𝐑𝐑𝐑𝐑_𝐄𝐄𝐑𝐑𝐄𝐄 
𝐆𝐆𝐆𝐆𝐆𝐆 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐞𝐞 1.00   
𝐄𝐄𝐄𝐄𝐄𝐄 0.59 1.00  
𝐑𝐑𝐑𝐑_𝐄𝐄𝐑𝐑𝐄𝐄 0.07 0.13 1.00 

Data source: OECD and Eurostat data. 

3. Results 
 

This section presents the estimates of EE scores. Recall that the SF model used in this study 
is: 

𝑙𝑙𝑙𝑙(𝑌𝑌)𝑖𝑖𝑖𝑖 =   𝛽𝛽0 + �𝛽𝛽𝑗𝑗
𝑗𝑗=1

𝑙𝑙𝑙𝑙 𝑋𝑋𝑗𝑗𝑖𝑖𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡
���������������������

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹

+ 𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖(𝒛𝒛𝑖𝑖𝑖𝑖)      

In this section, we present results from various model specifications, each integrating single 
or combined determinants of EE gaps into the eco-inefficiency component. This allows us to 
explore how each variable individually, and in combination with others, affect to EE gaps. 

4.1. Production frontier and determinants of EE gaps 
 
Table 2 presents the parameter estimates for different models. Models 1-3 each incorporate 
one of the determinants of EE gaps. Model 4 is estimated including all these three 
determinants. As models 3 and 4 indicate insignificant impact of RAET on EE gaps16, we 
estimate model 5 including only the two statistically significant determinants (our preferred 
model). EE’s elasticities with respect to all inputs are all different from zero except nuclear 
energy (in Models 4 and 5). Labour has the largest positive impact on EE. EE decreases with 
brown energy, suggesting that energy use increases emission more than increasing the GDP. 
The estimate of technical change, at about 1% per year on average, is also statistically 
significant.  
 

                                                            
16 These two regression models are reported in Table 2 in appendix. 
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Regarding the determinants of EE gaps, the regression results presented in Table 2 reveal that 
the impacts of policy variables such as the EPS index and GHG emission tax rate on EE gaps 
are statistically significant. Indeed, our results suggest a positive link between these variables 
and narrowing EE gaps. However, the RAET index does not seem to have a statistically 
significant impact on EE gaps across different models. This suggests that the RAET index may 
not accurately capture the adaption of environmentally friendly technologies, leading to its 
inconclusive impact on improvements of EE gaps. 

Table 2 below summarizes the sample average EE scores spanning the years from 2000 to 
2018 across several model specifications. As mentioned earlier, EE scores are quantified on a 
scale from zero to one, where a score of one represents an eco-efficient country that optimally 
balances GDP maximization with the reduction of GHG emissions, thereby decreasing 
environmental damage.  
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Table 2. Production frontier and determinants of EE gaps 
 Model1 Model2 Model3 Model4 Model5 
Dependent variable   EE  EE EE EE EE 
Frontier      
𝐋𝐋𝐞𝐞 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐞𝐞𝐭𝐭𝐫𝐫 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞 0.046* 

(0.026) 
0.050* 
(0.027) 

0.083*** 
(0.028) 

0.036 
(0.026) 

0.036 
(0.026) 

𝐋𝐋𝐞𝐞 𝐑𝐑𝐞𝐞𝐞𝐞𝐞𝐞𝐑𝐑𝐭𝐭𝐑𝐑𝐍𝐍𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞  0.071*** 
(0.014) 

0.071*** 
(0.015) 

0.084*** 
(0.016) 

0.068*** 
(0.014) 

0.068*** 
(0.014) 

𝐋𝐋𝐞𝐞 𝐁𝐁𝐫𝐫𝐞𝐞𝐑𝐑𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞   -0.410*** 
(0.033) 

-0.414*** 
(0.034) 

-0.359*** 
(0.038) 

-0.431*** 
(0.033) 

-0.432*** 
(0.033) 

𝐋𝐋𝐞𝐞 𝐋𝐋𝐭𝐭𝐑𝐑𝐞𝐞𝐍𝐍𝐫𝐫 0.618*** 
(0.056) 

0.590*** 
(0.058) 

0.590*** 
(0.070) 

0.641*** 
(0.055) 

0.641*** 
(0.055) 

𝐋𝐋𝐞𝐞 𝐂𝐂𝐭𝐭𝐂𝐂𝐞𝐞𝐭𝐭𝐭𝐭𝐍𝐍 0.036* 
(0.019) 

0.076*** 
(0.021) 

0.046* 
(0.027) 

0.050** 
(0.019) 

0.049** 
(0.019) 

𝐄𝐄𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐫𝐫𝐞𝐞𝐞𝐞𝐭𝐭 0.013*** 
(0.001) 

0.012*** 
(0.001) 

0.016*** 
(0.001) 

0.012*** 
(0.001) 

0.012*** 
(0.001) 

𝐄𝐄𝐞𝐞𝐭𝐭𝐞𝐞𝐫𝐫𝐍𝐍𝐞𝐞𝐂𝐂𝐭𝐭 -5.069*** 
(0.768) 

-5.151*** 
(0.813) 

-5.307*** 
(0.937) 

-5.404*** 
(0.772) 

-5.392*** 
(0.770) 

Determinants for EE gaps      
𝐍𝐍𝐞𝐞 (𝐆𝐆𝐆𝐆𝐆𝐆 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐞𝐞) -3.612*** 

(0.557) 
  -3.181*** 

(0.550) 
-3.176*** 

(0.550) 
𝐍𝐍𝐞𝐞  (𝐄𝐄𝐄𝐄𝐄𝐄)  -3.382*** 

(0.596) 
 -2.024*** 

(0.645) 
-1.984*** 

(0.626) 
𝐍𝐍𝐞𝐞  (𝐑𝐑𝐑𝐑_𝐄𝐄𝐑𝐑𝐄𝐄)   -0.097 

(0.278) 
0.127 

(0.443) 
 

𝐄𝐄𝐞𝐞𝐭𝐭𝐞𝐞𝐫𝐫𝐍𝐍𝐞𝐞𝐂𝐂𝐭𝐭 -19.847*** 
(2.398) 

-3.181*** 
(0.360) 

-5.553*** 
(0.424) 

-17.055*** 
(2.321) 

-17.040*** 
(2.324) 

Number of observations 418 418 418 418 418 
Number of countries 22 22 22 22 22 
Mean of EE 0.978 0.963 0.953 0.980 0.980 
Log likelihood 670.11 647.57 618.45 675.53 675.49 

Standard errors are reported in parentheses.* p<0.10, ** p<0.05, *** p<0.01. The dependent variable is eco-efficiency (EE) expressed in natural log. GHG emissions tax rate 
is defined as the energy tax revenue per unit of emission.  ESI is the environmental policy stringency index. RA_ERT is relative advantage in environment-related 
technologies index. Source: Results of authors' analysis based on data from OECD, Eurostat, Penn World Table, and the International Energy Agency.
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Figure 1 provides a breakdown by country of the average EE scores for the period 2000-2018, 
ordering the countries from the most eco-efficient (highest scores) at the top to the least.  This 
ranking illustrates that countries lower on the graph have more opportunities to enhance their 
EE gap. It is important to note that while full EE may not have been achieved by all, there is a 
trend towards the efficiency frontier. Many countries are approaching this boundary, 
reflecting a general advancement towards greater EE over the observed period. 
 
Figure 1. Country ranking of EE scores (2000-2018) 
 

 
 
Note: Values present the average eco-efficiency (EE) scores by country from 2000 to 2018. Data source: Results 
of authors' analysis based on data from OECD, Eurostat, Penn World Table, and the International Energy Agency. 
 
Figure 2 below illustrates the evolution of EE scores from 2000 to 2018, featuring the first and 
third quartiles along with the median yearly scores from model 5 for each year across the 
sampled countries. This figure shows that the gap between the quartiles is narrowing, 
suggesting a trend toward convergence in EE. Countries previously lagging in efficiency are 
making gains and approaching the performance of their more efficient counterparts, signaling 
a collective advancement toward improved EE within the sample. 
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Figure 2. EE score trends from Model 5 (2000-2018) 

 
Note: The values represent the first and third quartiles, along with the median yearly eco-efficiency (EE) scores 
for each year from 2000 to 2018 across the sampled countries. Data source: Results of authors' analysis based 
on data from OECD, Eurostat, Penn World Table, and the International Energy Agency. 

Figure 1 in appendix provides a historical progression of the EE scores for the countries that 
rank at the bottom in Figure 1. Over time, countries such as Sweden, Denmark, Italy, Norway, 
and Luxembourg have demonstrated high levels of EE. Luxembourg's high EE could potentially 
be explained by its service-based economy, in which services contribute significantly more to 
output than manufacturing (Peroni et al., 2024). Since the service sector generally generates 
lower emissions than manufacturing, this result is plausible. However, our econometric model 
accounts for this structural characteristic through country fixed effects and controls for the 
composition of energy sources used in production. Conversely, the Slovak Republic, Poland, 
and the Czech Republic have ranked among the less eco-efficient countries. To a certain 
extent, these patterns are consistent with the study by Robaina-Alves et al. (2015), who found 
that the Czech Republic, Poland, and Estonia were the least eco-efficient countries, while 
Sweden, Latvia, the UK, Hungary, and Portugal were among the most eco-efficient from 2005 
to 2011. 

4.2. Marginal effects of determinants of EE gaps 

 

The findings presented in Table 2 show the statistically significant impacts of EPS and GHG 
emission tax rate on explaining EE gaps across countries. Thus, we assess whether the 
marginal impact of changes in these factors on EE gaps varies based on their magnitude.17 
Figure 3 below illustrates that increases in GHG emission tax rate and the EPS index initially 
improve EE gaps, but the efficiency gains tend to decrease at higher levels of these variables. 
In other words, the efficiency gains from increasing these factors decrease as their magnitude 
increases. 

                                                            
17 It is important to acknowledge that the determinants of EE gaps exhibit non-linear relationships with the 
expected values of inefficiencies. Therefore, the slope coefficients of this variable does not directly correspond 
to its marginal effect. 
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Figure 3. Marginal effects 

   

 
Note: The plot shows, respectively, the marginal effect of GHG emission tax rate and ESP index on EE gaps. The 
continuous line represents a trend smoothed by Locally Estimated Scatterplot Smoothing, highlighting the overall 
pattern. Data source: Results of authors' analysis based on data from OECD, Eurostat, Penn World Table, and the 
International Energy Agency.  

4.3. Quantifying potential for carbon saving  

 
This section calculates potential carbon savings in terms of reduced CO2 equivalent GHG 
emissions by addressing EE gaps. We assess this potential using two measures: 1) savings for 
every million euros of GDP, showing the efficiency of emission reductions relative to each unit 
of economic output, and 2) aggregate savings, which present the total reduction in emissions 
across different countries, corresponding to the total GDP.  

Figure 4 below displays the potential yearly average carbon saving per million euro of GDP 
across countries from 2000 to 2018. This potential is calculated using the average EE gap and 
the yearly average carbon intensity for each country, expressed as CO2 equivalent GHG 
emissions per million euro of GDP.   The formula is written as: 

Yearly average potential carbon saving
= Yearly average carbon intensity × (Average EE gap) 
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The data in Figure 4 ranks countries based on their potential for carbon savings, from highest 
to lowest. Poland has the highest potential for yearly carbon savings per million euro of GDP, 
approximately 0.08 thousand tonnes. It is followed by the Slovak Republic, Estonia, and the 
Czech Republic. On the other hand, countries like Sweden, Denmark, Norway, Luxembourg, 
and Italy show minimal potential for equivalent carbon savings. For Luxembourg specifically, 
the figure suggests a very small saving (well below 0.01 thousand tonnes per million euro), 
which is consistent with its service-dominated, already low-carbon economy. 

Figure 4. Average annual potential for carbon savings per GDP unit     

 
Note: Values present the average annual potential carbon saving in terms of CO2 equivalent GHG emissions 
savings (in thousands tonnes) per million Euro of GDP achievable through the elimination of EE gaps. These 
averages are calculated over the period from 2000 to 2018. Y-Axis presents carbon savings measured in Tonnes 
per Million of GDP. Data source: Results of authors' analysis based on data from OECD, Eurostat, Penn World 
Table, and the International Energy Agency. 

Figures 5 and 6 illustrate the potential annual carbon savings (in total) each country could 
achieve by completely eliminating their EE gaps, presented in million tonnes and as a 
percentage of their average annual emissions, respectively.  

To compile this data in Figure 5, the potential carbon savings for each country are first 
calculated by considering their respective EE gaps and total yearly GHG emissions. The formula 
used is: 

Yearly average potential carbon saving
= 𝐴𝐴𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡 (CO2 equivalent GHG emissions × EE gap) 

Figure 5 below reveals a significant variation in potential CO2 equivalent GHG savings across 
different countries. Poland stands out with the highest potential for environmental 
improvements and emissions reductions through addressing its substantial EE gap, followed 
by Germany and the Czech Republic.18 Research suggests that annual savings on CO2 

                                                            
18 This likely results from a combination of relatively higher EE gap GHG emissions. 
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equivalent GHG emissions could average around 75 million tonnes. To illustrate the scale of 
these savings, according to the United States Environmental Protection Agency’s energy 
calculator, this amount is equivalent to eliminating CO2 emissions from the annual energy 
consumption of over 9.7 million homes, or more than 8 years of total household energy use 
in Paris as of 2019, assuming one household per house according to data from statista.com. It 
is important to note that while these calculations highlight direct carbon savings, they do not 
account for indirect cost savings or the positive externalities related to reduced air pollution-
related illnesses and mortality or the overall improved well-being of the population. A more 
comprehensive assessment of GHG emission reduction would incorporate these broader 
impacts, although they are beyond the scope of this current analysis.  

Figure 5. Average annual total potential for carbon saving 
 

 
Note: Values present the average annual potential carbon saving in terms of CO2 equivalent GHG emissions 
savings (in thousands tonnes) achievable through the elimination of EE gaps by country. These averages are 
calculated over the period from 2000 to 2018. Y-Axis presents carbon savings measured in Million Tonnes. Data 
source: Results of authors' analysis based on data from OECD, Eurostat, Penn World Table, and the International 
Energy Agency. 

Finally, Figure 6 presents the potential savings as a share of each country’s total emissions if 
all EE gaps were eliminated. It identifies the Slovak Republic as the leader in percentage terms 
of average annual emission savings, followed by Poland and the Czech Republic. In contrast, 
Sweden, Denmark, Italy, Norway, and Luxembourg have the lowest potential for savings when 
viewed as a percentage of their average annual emissions. For Luxembourg, the forecast 
saving represents only a fraction of one percent of its current annual emissions—among the 
lowest in the sample. This limited saving reflects the country’s service-oriented economy and 
the fact that many EE gains have already been captured. 
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Figure 6. Average annual GHG emissions savings potential by country 

 
Note: Values represent the average annual potential carbon saving in terms of CO2 equivalent GHG emissions 
savings achievable by eliminating EE gaps by country, measured as a percentage of the country's total 
emissions. These averages are calculated over the period from 2000 to 2018. Data source: Results of authors' 
analysis based on data from OECD, Eurostat, Penn World Table, and the International Energy Agency. 

5. Conclusions 
 

While Gross Domestic Product (GDP) is a widely used measure of economic performance, it 
fails to account for the environmental impacts of production, such as emmissions of 
greenhouse gasses (GHG). By focusing on eco-efficiency (EE), a measure of economic 
performance that includes GHG emmissions, we assess how 22 European countries balance 
production and environmental costs. Countries that maximize their economic output per unit 
of GHG emitted are considered eco-efficient. Deviation from this maximum level of output per 
unit of GHG represents EE gap or eco-inefficiency, which we estimated using Greene's true 
fixed-effect stochastic frontier model (Greene, 2005).  

The results highlight varying levels of EE across countries. The average EE scores, calculated 
over the period from 2000 to 2018, ranged from 0.91 to 0.99 across the 22 countries. Sweden, 
Denmark, Italy, Norway, and Luxembourg were generally ranked as the most eco-efficient 
countries. In contrast, the Slovak Republic, Poland, and the Czech Republic ranked as the least 
eco-efficient counties. Luxembourg’s strong performance may reflect its service-based 
economic structure, which tends to produce lower emissions. However, this factor is 
accounted for in the analysis through country fixed effects and controls for energy mix. 

We also analysed which factors explain variations in EE gaps across countries. More precisely, 
countries with higher energy tax revenue or a higher Environmental Policy Stringency (EPS) 
index have lower EE gaps. However, the positive impact of these factors on EE declines as their 
levels increase, indicating factors’ diminishing returns in efficiency gains.  

Finally, we calculated potential carbon savings (i.e. CO2 equivalent GHG emissions savings) 
from elimination of EE gaps. The largest  savings stem from closing EE gaps in Poland, Germany 
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and the Czech Republic.  Environmental gains from closing all eco-efficiency gaps could lead 
to a reduction in carbon emissions by 75 million metric tonnes.As a final note, for 
Luxembourg—a service-based economy—our analysis currently presents results for all 
sectors; however, Luxembourg is predominantly services-oriented. Conducting the analysis at 
the industry level with a focus on services would therefore yield more relevant insights into 
the effectiveness of policies aimed at improving EE. Because the service sector relies less on 
emissions-intensive inputs and more on labour and digital infrastructure, the impact of 
specific policy measures on EE can differ from those in energy-intensive sectors such as 
manufacturing. Accordingly, further work could concentrate on the service sector alone to 
capture the effects of policy measures on EE gains, thereby allowing the results to more 
accurately reflect Luxembourg’s economic structure. 
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Appendix  
Figure 1. EE by country (2000- 2018) 

 
Data source: Results of authors' analysis based on data from OECD, Eurostat, Penn World Table, and the 
International Energy Agency. 
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Table 1. Descriptive statistics: Averages (2000–2018) 
Country GDP 

 
GHG 

 
GDP/GHG  Labour 

 
Capital 

 
Nuclear Energy 

 
Renewable Energy 

 
Brown Energy 

 
ETax 

 
ETax/GHG 

 
RA_ERT 

 
EPS 

 
Austria 333112 85767 3.9 4070900 2133086 .05 8974 23546 4600 .054 1.18 2.64 

Belgium 398215 137304 2.95 4454119 2516599 11315 2953 41924 5699 .0429 .903 2.51 

Czech Republic 159862 141776 1.14 5097367 1893509 6695 3202 33765 2837 .0203 1.12 2.62 

Denmark 264931 64826 4.21 2824363 1189636 .05 4009 14321 5637 .0898 1.58 3.34 

Estonia 19537 19581 .996 622766 142943 .05 773 4667 337 .017 1.11 3.06 

Finland 208377 70841 3.01 2483804 906125 5992 9355 19352 3479 .0511 1.08 3.17 

France 2103019 525284 4.04 2.69e+07 1.33e+07 111922 20582 126470 32063 .0622 1.05 3.31 

Germany 2899863 984220 2.97 4.08e+07 1.59e+07 33781 30178 261608 47606 .0486 1.22 2.85 

Greece 199697 120165 1.67 4435887 2162222 .05 2111 24871 3776 .0334 1.14 2.24 

Hungary 109633 68170 1.63 4158553 998076 3846 2238 19862 1884 .0282 .946 2.75 

Ireland 209005 66286 3.19 1935045 949355 .05 698 13280 2405 .0369 .618 2.3 

Italy 1736583 521160 3.37 2.46e+07 1.49e+07 .05 20270 148184 38530 .0763 .897 3.06 

Luxembourg 48085 12626 3.83 348725 185736 .05 163 3795 836 .0662 1.26 3.06 

Netherlands 666916 216305 3.1 8706847 3537663 1011 3576 72261 11168 .0521 .869 2.79 

Norway 315483 55967 5.64 2527719 1144347 .05 12766 15894 4135 .074 1.11 3.05 

Poland 356209 405030 .879 1.50e+07 1900835 .05 6851 88951 7348 .0181 1.2 2.35 

Portugal 188479 76858 2.47 4916396 2289062 .05 4739 19004 3088 .0406 1.22 2.35 

Slovak Republic 66542 46973 1.45 2203094 554747 4228 1214 12180 1194 .0264 1.23 2.18 

Slovenia 37610 19247 1.97 955429 381536 1479 972 4567 969 .0514 .678 2.11 

Spain 1060793 391396 2.74 1.88e+07 8456963 15411 12887 99819 14481 .0377 1.06 2.25 

Sweden 406530 63662 6.51 4571558 2086103 16898 16584 15932 7430 .118 .972 3.28 

United Kingdom 2084791 643152 3.34 2.97e+07 1.12e+07 19017 8687 174470 37481 .0599 .939 2.69 

Note: Units of measurement for variables are as follows: GDP in M€ (Million Euros), GHG in Kt (Kilotons), Labour in No. (Number), Capital in M€ (Million Euros), Nuclear 
Energy, Renewable Energy, and Brown Energy in Mtoe (Million Tons of Oil Equivalent), ETax in M€ (Million Euros), ETax/GHG in M€/kt (Million Euros per Kiloton). RA_ERT and 
EPS are indices. Data source: OECD, Eurostat data, Penn World, and International Energy Agency. 
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Table 2. Production frontier and determinants of EE gaps  
 Model6 Model7 
Dependent variable EE EE 
Frontier                  
𝐋𝐋𝐞𝐞 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐞𝐞𝐭𝐭𝐫𝐫 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞 0.046* 

(0.026) 
0.050*   
(0.027)    

𝐋𝐋𝐞𝐞 𝐑𝐑𝐞𝐞𝐞𝐞𝐞𝐞𝐑𝐑𝐭𝐭𝐑𝐑𝐍𝐍𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞  0.071*** 
(0.014) 

0.071*** 
(0.015)    

𝐋𝐋𝐞𝐞 𝐁𝐁𝐫𝐫𝐞𝐞𝐑𝐑𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞𝐫𝐫𝐞𝐞𝐞𝐞   -0.410*** 
(0.033) 

-0.416*** 
(0.034)    

𝐋𝐋𝐞𝐞 𝐋𝐋𝐭𝐭𝐑𝐑𝐞𝐞𝐍𝐍𝐫𝐫 0.618*** 
(0.056) 

0.590*** 
(0.058)    

𝐋𝐋𝐞𝐞 𝐂𝐂𝐭𝐭𝐂𝐂𝐞𝐞𝐭𝐭𝐭𝐭𝐍𝐍 0.036* 
(0.019) 

0.077*** 
(0.021)    

𝐄𝐄𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐫𝐫𝐞𝐞𝐞𝐞𝐭𝐭 0.013*** 
(0.001) 

0.012*** 
(0.001)    

𝐄𝐄𝐞𝐞𝐭𝐭𝐞𝐞𝐫𝐫𝐍𝐍𝐞𝐞𝐂𝐂𝐭𝐭 -5.069*** 
(0.770) 

-5.142*** 
(0.813)    

Determinants for EE gaps                  
𝒍𝒍𝒍𝒍(𝐆𝐆𝐆𝐆𝐆𝐆 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐞𝐞) -3.612*** 

(0.560) 
                
                

𝒍𝒍𝒍𝒍(𝑬𝑬𝑬𝑬𝑬𝑬)  -3.365*** 
(0.592)    

𝒍𝒍𝒍𝒍(𝑹𝑹𝑹𝑹_𝑬𝑬𝑹𝑹𝑬𝑬) -0.002 
(0.456) 

-0.151    
(0.293)    

𝐄𝐄𝐞𝐞𝐭𝐭𝐞𝐞𝐫𝐫𝐍𝐍𝐞𝐞𝐂𝐂𝐭𝐭 -19.845*** 
(2.424) 

-3.167*** 
(0.359)    

No. Observations 418 418    
No. Countries 22 22 
Mean of EE 0.978  0.963                  
Log likelihood 670.11 647.70 

Note: Standard errors are reported in parentheses.* p<0.10, ** p<0.05, *** p<0.01. Dependent variable eco-
efficiency (EE) is in natural log. GHG emission tax rate is defined as the energy tax revenue per unit of emission.  
ESI is the environmental policy stringency index. RA_ERT is relative advantage in environment-related 
technologies index. Data source: Results of authors' analysis based on data from OECD, Eurostat, Penn World 
Table, and the International Energy Agency. 
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