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Abstract 

Confronted with negative environmental impacts, rising fuel costs and increas-

ing congestion, many cities are implementing sustainable mobility measures to 

improve the flow of passenger and goods. Examples of these measures are  use 

of  public transport, cycling, walking, energy efficient vehicles, biofuels. The 

challenge before transport decision makers is which one(s) to choose for im-

plementation as often there is no or limited quantitative data available on the 

subject. Moreover, the context of each city, its geographic and transport condi-

tions restrict the generalization of results obtained in experienced cities. In this 

paper, we investigate four multicriteria decision  making (MCDM) techniques 

namely TOPSIS, VIKOR, SAW and GRA for sustainability evaluation of urban 

mobility projects under qualitative data and demonstrate their application 

through a numerical example. 

Keywords:   Multicriteria decision making, Urban Mobility, Sustainability 

Evaluation, TOPSIS, VIKOR, GRA, SAW, Fuzzy Numbers. 

JEL classification codes: C6, D8, R4 
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1. Introduction 

Sustainable transportation is vital for modern cities to ensure mobility of goods, 

people and a healthier environment. More and more cities are becoming active in 

this direction and implementing measures that encourage the use of public trans-

port and softer modes of transport such as walking, biking etc. Luxembourg city 

transportation group has also implemented several such measures to improve mo-

bility and modal split towards public transport. Modal split represents the distri-

bution (in percentage) of travellers with respect to usage of different modes of 

transport (e.g. bus, tram, private car, cycling). Modal split in favour of public 

transport will improve city sustainability. The Luxembourg authority (Ministry of 

Sustainable Development and Infrastructure) is aiming to achieve a modal split of 

75/25 in 2020 (75% of trips by private vehicles and 25% by public transporta-

tion). In 2007, the modal split was 85.5/14.5 (source: MODU strategy). To 

achieve this target, the Luxembourg Government is planning several transport 

projects. Among them is the implementation of a tramway in Luxembourg City in 

2017. The tramway project will involve implementation of several measures like 

the reorganization of bus lines and train networks to achieve a better correspon-

dence of transport supply and demand. These transport projects will affect the 

mobility of the trans-border commuters in particular (Omrani et al., 2010) and 

therefore, it is important to perform careful evaluation and selection of these pro-

jects for sustainable mobility planning. 

In this paper, we are investigating the use of multicriteria decision making 

techniques for sustainability evaluation of urban mobility projects. The Brunt-

land Commission defines sustainability as  development that meets the needs of 

the present without compromising the ability of future generations to meet their 

own needs (United Nations World Commission on Environment & Develop-

ment, 1987). The World Bank (1996) uses the ―triple bottom line‖ of economic, 

environmental, and social equity to define sustainability. In this paper, we inte-

grate the triple bottom line concept i.e., achievement of social, economical and 

environmental objectives with technical efficiency for evaluating urban mobility 

projects through the use of multicriteria decision making (MCDM) techniques. 
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Multicriteria decision making involves evaluating a set of candidates (al-

ternatives) against a set of given criteria by a committee of decision makers. 

Multicriteria decision making has been widely applied in evaluating transporta-

tion projects (Stewart 1994, Teng and Tzeng 1996, Won 1990, Shang et al., 

2004, Omrani et al., 2006, Zak 2011). Yedla and Shrestha (2009) use AHP to 

evaluate six sustainable transportation modes. Tsamboulas and Mikroudis (2000) 

present a multi-criteria evaluation framework of environmental impacts and costs 

of transport initiatives.  Awasthi and Omrani (2009) present an AHP and belief 

theory based approach for evaluating sustainable transportation solutions. Avin-

eri et al (2000) perform transportation project selection using fuzzy sets theory. 

Eboli and Mazzulla propose a multicriteria methodology for evaluating transit 

service quality based on subjective and objective measures from the passenger‘s 

point of view. Friesz and Tourreiles (1981) perform comparison of multicriteria 

optimization methods in transport project evaluation. Frohwein et al (1999) pro-

pose a multicriteria framework to aid comparison of roadway improvement pro-

jects. Giuliano (1985) propose a multi-criteria method for transportation invest-

ment planning. Most of these studies rely on a single MCDM method without 

validating the results with other MCDM techniques. Under this situation, it is 

hard to see the impact of MCDM technique selection on the final results. This is 

the challenge we are addressing in this paper.  

The rest of the paper is organized as follows. In section 2, we present the 

problem definition. The solution approach is provided in section 3. Section 4 

presents the numerical application of the proposed approach. Finally, in section 5 

we provide the conclusions and steps for future work. 

 

2. Problem Definition 

Our goal in this paper is to investigate the application of multicriteria decision 

making for sustainability evaluation of urban mobility projects.  To achieve this 

goal, the research issues we are addressing are: 

 Which evaluation criteria to choose for sustainability evaluation ? How to 

obtain them ? 

 How to generate project ratings under lack of quantitative data ? 
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 Which multicriteria method to choose for project evaluation ? How to deal 

with qualitative ratings in the selected method? 

 

3. Solution Approach 

Our solution approach comprises of three main steps.  

1. Selection of evaluation criteria using literature review  

2. Generating qualitative criteria and alternative ratings using expert opinions 

3. Identifying the best alternative using various multicriteria decision making 

techniques 

 

3.1 Selection of evaluation criteria 

The first step involves selection of criteria for evaluating sustainability of urban 

mobility projects through comprehensive literature review (Jeon, Amekudzi and 

Guensler 2008, Jonsson 2008, Litman 2009, Levine and Underwood, 1996, 

Meyer and Miller, 2001, Nakanishi, 1997, Nathanail 2008, Nocera, 2010, 

Richardson, 2005, Zietsman 2000, Sayers et al., 2003), and our practical experi-

ence with city transportation projects (ECOSYMPA and SUCCESS) in La Ro-

chelle, France. The final list contains 19 criteria (Table 1).  
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Table 1 : Sustainability Evaluation Criteria 

 

It can be seen in Table 1, that criterion C2 and C10 are the cost (C) category crite-

ria that is, the lower the value, the more sustainable the alternative (or urban mo-

bility project). The remaining criteria are benefit (B) type criteria, that is, the 

higher the value, the more sustainable the urban mobility project. 

 

3.2 Generating qualitative criteria and alternative ratings.  

For sustainability evaluation of urban transportation projects, we need data 

on social-economic-environmental-technical characteristics (or criteria). How-

ever, it has been observed in general practice, that often there is almost none or 

very limited data available on this subject, thereby making the evaluation process 

difficult. To address this situation, we will make use of qualitative ratings such as 

Good, Very Good, Poor, Very Poor etc. for assessing the alternatives and the cri-

teria. Later, they will be transformed into fuzzy numbers using conversion 

Category Criteria Type 

Economic 

 

1. Revenues   B 

2. Operating costs   C 

Environmental 

 

3. Energy conservation  B 

4. Conformance to environmental standards  B 

Technical 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Possibility of expansion  B 

6. Service Network B 

7. Occupancy rate  B 

8. Number of users  B 

9. Mobility  B 

10. Travel cost   C 

11. Service Reliability  B 

12. Travel time  B 

13. Accessibility  B 

14. Customer Responsiveness  B 

15. Connectivity to multimodal Transport  B 

16. Adapted to customers with Specific Needs  B 

Social 

 

 

17. Gender Equity  B 

18. Labor Welfare  B 

19. Ethics/Fairtrade Practice B 
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schemes provided in Table 2 and Table 3 for further processing through MCDM 

techniques. 

 

3.2.1 Preliminaries of fuzzy set theory 

Definition 1: A triangular fuzzy number is represented as a triplet a~ = (a1,a2,a3). 

Due to their conceptual and computation simplicity, triangular fuzzy numbers are 

very commonly used in practical applications (Pedrycz 1994, Klir and Yuan 

1995).  The membership function )(~ xa  of triangular fuzzy number a~  is given 

by: 
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Where a1, a2, a3 are real numbers and a1<a2<a3.  The value of x at a2 gives 

the maximal grade of )(~ xa  i.e., 1)(~ xa ; it is the most probable value of the 

evaluation data. The value of x at a1 gives the minimal grade of )(~ xa  i.e., 

0)(~ xa ; it is the least probable value of the evaluation data. The narrower the 

interval [a1,a3], the lower is the fuzziness of the evaluation data. 

 

a~  

 1 

      

)(~ xa  

 

 0        a1            a2                    a3 

Figure 1: Triangular fuzzy number a~  

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TY8-4SHF4CG-14&_mathId=mml10&_user=1069146&_cdi=5612&_rdoc=1&_acct=C000051262&_version=1&_userid=1069146&md5=45eb64cde56200dc50570b911a5a20ab
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Definition 2: In fuzzy set theory, conversion scales are applied to transform the 

qualitative terms into fuzzy numbers. Table 2 and  3 present the conversion 

schemes for the qualitative alternative and criteria ratings.  

  

Qualitative Rating Membership Function 

Very poor (VP) (1,1,3) 

Poor(P) (1,3,5) 

Fair (F) (3,5,7) 

Good(G) (5,7,9) 

Very Good (VG) (7,9,9) 

 

Table 2: Fuzzy transformation for qualitative alternative ratings  

  

Qualitative Rating Membership Function 

Very Low (1,1,3) 

Low (1,3,5) 

Medium (3,5,7) 

High (5,7,9) 

Very High (7,9,9) 

 

Table 3: Fuzzy transformation for qualitative criteria ratings  

 

3.3 Multicriteria decision making   

The third step involves multicriteria decision making for sustainability evaluation 

of urban mobility projects.  We have chosen four techniques namely Fuzzy TOP-

SIS, Fuzzy VIKOR, Fuzzy SAW and Fuzzy GRA in this paper. These techniques 

were particularly chosen because they perform alternative evaluation based on the 

closeness to ideal solution (except Fuzzy SAW).  

Let us consider a set of m alternatives called 1 2{ , ,., }mA A A A which are to 

be evaluated against a set of n criteria, 1 2{ , ,., }nC C C C . The criteria weights are 

denoted by wj(j=1,2,..,n). The performance ratings of decision maker 

),..,2,1( KkDk  for each alternative Ai(i=1,2,..,m) with respect to criteria 

( 1,2,.., )jC j n  are denoted by: 
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KknjmicbaxR ijkijkijkijkk ,..2,1;,..,2,1;,..,1),,,(~~
 with membership 

function )(~ x
kR

 . 

If the fuzzy ratings of k decision makers are described by triangular fuzzy 

number ,,..,2,1),,,(
~

KkcbaR kkkk 
 
then the aggregated fuzzy rating is given 

by KkcbaR ,..,2,1),,,(
~

  where;
 

}{max,
1

},{min
1

k
k

K

k

kk
k

ccb
K

baa  
      

(1) 

If the fuzzy rating  of the k
th

 decision maker for alternative Ai and criteria 

Cj are given by ),,(~
ijkijkijkijk cbax  and the importance weight by 

njmicbaw jkjkjkjk ,..2,1,,,,2,1),,,(~   respectively, then the aggregated fuzzy 

ratings ( ijx~ ) of alternatives with respect to each criteria based on eqn (1) are 

given by ),,(~
ijijijij cbax   where  
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The aggregated fuzzy weights ( jw~ ) of each criterion are calculated as 
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The fuzzy decision matrix for the alternatives ( D
~

) and the criteria (W
~

)  is 

constructed as follows: 

1 2

1 11 12 1

2 21 22 2
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...

. ... ... ... ...

...
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m m m mn
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A x x x

A x x x
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A x x x

 
 
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 
 
  ,i=1,2,…,m; j=1,2,..,n  

(4)
 

)~,..,~,~(
~

21 nwwwW 
        (5) 
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The goal is now to generate alternative ratings based on D
~

 and W
~

and rank 

them. The stepwise description for each of the four MCDM techniques for gen-

erating these ratings is presented as follows. 

 

3.3.1. Fuzzy VIKOR  

The fuzzy VIKOR technique involves fuzzy assessments of criteria and al-

ternatives in VIKOR (in Serbian: VlseKriterijumska Optimizacija I Kompro-

misno Resenje). Its foundation lies in finding a compromise solution [Opricovic, 

1998]. It measures the closeness of the alternative with respect to the positive 

ideal solution for evaluation.  

Step 1: Defuzzify the elements of fuzzy decision matrix for the criteria weights 

and the alternatives into crisp values. A fuzzy number a~ = (a1, a2, a3) can be 

transformed into a crisp number a by employing the below equation: 

6

4 321 aaa
a


                   

(6)
 

Step 2: Determine the best 
*

jf and the worst values jf 

 
of all criteria ratings 

j=1,2,...,n  

       (7) 

min { }j i ijf x   

Step 3:  Compute the values Si and Ri using the following equations 

*
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1

n
j ij

i j

j j j

f x
S w

f f 
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
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


        (8)

 

*

*
max

j ij

i j j

j j

f x
R w

f f 


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
 

Step 4: Compute the values Qi as following 

* *

* *
(1 )i i

i

S S R R
Q v

S S R R


 

 
  

        (9)
 

 where: 

* max { }j i ijf x

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TY8-4SHF4CG-14&_mathId=mml10&_user=1069146&_cdi=5612&_rdoc=1&_acct=C000051262&_version=1&_userid=1069146&md5=45eb64cde56200dc50570b911a5a20ab
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*

*

min ;

max ;

min ;

max ;

i i

i i

i i

i i

S S

S S

R R

R R












        (10)

 

And   is the weight for the strategy of maximum group utility and 1-  is the 

weight of the individual regret. 

Step 5: Rank the alternatives, sorting by the values S,R and Q in ascending order. 

Step 6: Propose as a compromise solution the alternative ( (1)A ) which is the best 

ranked by the measure Q(minimum) if the following two conditions are satisfied 

C1: Acceptable advantage 

(2) (1)( ) ( )Q A Q A DQ         (11) 

Where (2)A  is the alternative with second position in the ranking list by Q and   

DQ = 1/J-1         (12) 

C2: Acceptable stability in decision making 

The alternative (1)A  must also be the best ranked by S or/and R.  The compro-

mise solution is stable within a decision making process, which could be the 

strategy of maximum group utility (when  >0.5 is needed), or ―by consensus 

  0.5‖, or ―with veto‖ ( <0.5). Please note that   is the weight of the decision 

making strategy of maximum group utility. 

If one of the conditions is not satisfied, then a set of compromise solutions is 

proposed, which consists of: 

 Alternatives (1)A and (2)A if only the condition C2 is not satisfied Or 

 Alternatives (1) (2) ( ), ,...., MA A A if the condition C1 is not satisfied; ( )MA is 

determined by the relation ( ) (1)( ) ( )MQ A Q A DQ   for maximum M (the 

position of these alternatives are in closeness).     
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 3.3.2 Fuzzy TOPSIS 

The fuzzy TOPSIS approach involves fuzzy assessments of criteria and al-

ternatives in TOPSIS [Hwang and Yoon, 1981]. The TOPSIS technique chooses 

an alternative that is closest to the positive ideal solution and farthest from the 

negative ideal solution. A positive ideal solution is composed of the best per-

formance values for each criterion whereas the negative ideal solution consists of 

the worst performance values.  

Step 1: Normalize the fuzzy decision matrix 

The raw data are normalized using linear scale transformation to bring the various 

criteria scales into a comparable scale. The normalized fuzzy decision matrix R
~

 

is given by: 

njmirR mxnij ,..,2,1;,..,2,1,]~[
~

         (13) 

where:  

),,(~
***

j

ij

j

ij

j

ij

ij
c

c

c

b

c

a
r   and ij

i
j cc max* 

 
 (benefit criteria)   (14) 

),,(~

ij

j

ij

j

ij

j

ij
a

a

b

a

c

a
r



  and ij
i

j aa min

  (cost criteria)   (15) 

Step 2: Compute the weighted normalized matrix 

The weighted normalized matrix V
~

for criteria is computed by multiplying the 

weights ( jw~ ) of evaluation criteria with the normalized fuzzy decision matrix ijr~ .  

njmivV mxnij ,..,2,1;,..,2,1,]~[
~

  where jijij wrv ~(.)~~     (16) 

Step 3: Compute the fuzzy positive ideal solution (FPIS) and fuzzy negative 

ideal solution (FNIS) for each criteria: 

)~,..,~,~( **

2

*

1

*

nvvvA    where njmivv ij
i

j ,..,2,1;..,2,1},{max~
3

*   
(17)

 

)~,..,~,~( 21 nvvvA  where njmivv ij
i

j ,..,2,1;..,2,1},{min~
1 

  (18) 

Step 4: Compute the distance of each alternative from FPIS and FNIS: 
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The distance ( *

id , 

id ) of each weighted alternative mi ..,2,1  from the FPIS and 

the FNIS is computed as follows: 

mivvdd
n

j

jijvi ,..,2,1),~,~(
1

** 
       (19)

 

mivvdd
n

j

jijvi ,..,2,1),~,~(
1






                                                                (20) 

Where )
~

,~( badv is the distance measurement between two fuzzy numbers a~  and 

b
~

 and 2 2 2

1 1 2 2 3 3

1
( , ) ( ) ( ) ( )

3
vd a b a b a b a b       

   (21)

 

Step 5: Compute the closeness coefficient ( iCC ) of each alternative.  

The closeness coefficient iCC represents the distances to the fuzzy positive ideal 

solution (A
*
) and the fuzzy negative ideal solution (A

-
) simultaneously. The 

closeness coefficient of each alternative is calculated as: 

mi
dd

d
CC

ii

i
i ,..,2,1,

*









      (22)

 

Step 6: Rank the alternatives 

In step 9, the different alternatives are ranked according to the closeness coeffi-

cient ( iCC ) in decreasing order. The best alternative is closest to the FPIS and 

farthest from the FNIS. 

Note: It can be seen from the above equations that VIKOR method uses linear 

normalization whereas TOPSIS method uses vector normalization. Also, the ag-

gregation function used by VIKOR represents the distance from the ideal solu-

tion whereas TOPSIS method uses distances from the ideal and anti-ideal solu-

tions. The relative importance of these distances is not considered in TOPSIS. 

 

3.3.3 Fuzzy Simple Aggregated Weighting 

The fuzzy SAW technique involves fuzzy assessments of criteria and alter-

natives in SAW (Simple Additive Weighting) and uses an overall score of the al-
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ternative using weighted sum of its attribute values for alternative selection 

(Yoon and Hwang, 1981).  

Step 1: Normalize the data using the following equations. 

1,2,.., ; 1,2,..,
max{ }

ij

ij

ij
i

x
r i m j n

x
    (benefit type criteria)   (23)

 

min{ }
1,2,.., ; 1,2,..,

ij
i

ij

ij

x
r i m j n

x
     (cost type criteria)   (24)

 

Step 2: Calculate the overall performance rating iu
 
for alternative i by aggregat-

ing the product of its various criteria values with their respective weights. 

i j ij

j

u w x         (25)
 

Step 3: Select the alternative with the highest overall performance value 

1,2,..iu i m   

 

3.3.4. Fuzzy Grey Relational Analysis  

The fuzzy GRA technique involves fuzzy assessments of criteria and alter-

natives in GRA (grey Relational Analysis) and uses the correlation between the 

alternative and the ideal alternative (reference sequence) to generate alternative 

rankings. The closer the alternative is to the ideal alternative, the better it is.   

Step 1: Normalize the data using the following equations: 

nj
mixMinmixMax

mixMinx
r

ijij

ijij

ij ,.,2,1,
},..,2,1,{},..,2,1,{

},..,2,1,{~ 





 
(Benefit type crite-

ria)           (26) 

nj
mixMinmixMax

xmixMax

ijij

ijij
,.,2,1,

},..,2,1,{},..,2,1,{

},..,2,1,{





 (Cost type criteria) 

           (27) 
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njmi
mixMinxxmixMaxMax

xx

ijjjij

jij
,.,2,1;,..,2,1,,

}},..,2,1,{,},..,2,1,{{

||
**

*







(The closer to the goal type criteria)       (28) 

Step 2: Calculate the reference sequence for the normalized criteria. The refer-

ence sequence ),,,...,,( 000302010 nj xxxxxX   contains the ideal value for each cri-

terion. For cost category criteria, it is the lowest value whereas for the benefit 

category criteria, it is the highest value. Our aim is to find the alternative whose 

comparability sequence is closest to the reference sequence.  

Step 3: Calculate the grey relational coefficient ),( 0 ijj xx  between ijx
 
and jx0  

to determine the closeness of ijx
 
to jx0 .The larger the grey relational coefficient, 

the closer ijx
 
and jx0  

are. The grey relational coefficient is calculated as follows: 

},..,2,1;,...,2,1,{

},..,2,1;,...,2,1,{

..,2,1;,...,2,1
       

),(

max

min

0

max

maxmin
0

njmiMax

njmiMin

xx

njmixx

ij

ij

ijjij

ij

ijj


















   (29) 

where  is the distinguishing coefficient, ]1,0[ . The purpose of distinguish-

ing coefficient is to expand or compress the range of grey relational coefficient.
 

Step 4: Calculate the grey relational grade 0( , )iX X  between 0X  and iX .  The 

grey relational grade represents the level of correlation between the reference se-

quence and the comparability sequence and is given by.  

mixxwXX ijj

n

j

ji ,..,2,1),,(),( 0

1

0  


      (30) 

Where jw  is the weight of the attribute j and



n

j

jw
1

1. 

Step 5: Select the alternative with the highest grey relational grade. 

The ranking generated by the four methods will be subject to veto rule. The 

alternative (s) that is ranked highest by the majority of techniques will be finally 

chosen. 
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4. NUMERICAL APPLICATION 

In this section, we present the application of four MCDM techniques namely Fuzzy 

TOPSIS, Fuzzy VIKOR, Fuzzy GRA, Fuzzy SAW for sustainability evaluation of 

three urban mobility projects (A1, A2, A3) in the context of city of Luxembourg. Ex-

amples of these projects are implementation of new tramway in the city center (A1), 

reorganization of existing bus lines in the city to perform optimized service (A2), and 

implementation of electric vehicle car-sharing stations in the city (A3).  

A committee of three decision makers (D1, D2, and D3) is formed to obtain quali-

tative ratings (Tables 2 and 3) for the criteria and the alternatives. These ratings are 

presented in Table 4.  

 

Criteria 

Qualitative rating Aggregate Fuzzy 

Rating 

Crisp 

rating 
D1 D2 D3 

C1 L VL M (1,3,7) 3.333 

C2 H L M (1,5,9) 5 

C3 VL VL VH (1,3.667,9) 4.111 

C4 H L L (1,4.333,9) 4.556 

C5 VH L L (1,5,9) 5 

C6 VL L H (1,3.667,9) 4.111 

C7 L H M (1,5,9) 5 

C8 L L VL (1,2.333,5) 2.556 

C9 VL M L (1,3,7) 3.333 

C10 M L L (1,3.667,7) 3.778 

C11 M VL H (1,4.333,9) 4.556 

C12 M L H (1,5,9) 5 

C13 M L VL (1,3,7) 3.333 

C14 VH VH VL (1,6.333,9) 5.889 

C15 H VH H (5,7.667,9) 7.444 

C16 L L L (1,3,5) 3 

C17 M VL H (1,4.333,9) 4.556 

C18 H M VL (1,4.333,9) 4.556 

C19 H M M (3,5.667,9) 5.778 

 

Table 4: Qualitative Assessments and Aggregate fuzzy criteria ratings 
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The aggregated fuzzy weights ( ijw ) of criteria are obtained using Eq. (3). 

For example, for criteria C1 (Qualitative Rating = (L,VL,M)), the aggregated 

fuzzy weight is given by ),,(~
321 jjjj wwww   where: 

1 2 3

1
min(1,1,3), (3 1 5), max(5,3,7)

3

(1,3,7)

j j j
k k

j

w w w

w

    



 

The aggregated fuzzy weights jw~  are transformed into crisp number jw  

using eq (6). For example, for criteria C1, (1,3,7)jw  , we have  

1*1 (4*3) 7
3.33

6
jw

 
  . Likewise, we compute the aggregate weights for 

the remaining criteria. The results for aggregate weights of the 19 criteria are 

presented in last column of Table 4.  Table 5 presents the qualitative ratings for 

the three alternatives provided by the decision making committee.  

Criteria 

A1 A2 A3 

D1 D2 D3 D1 D2 D3 D1 D2 D3 

C1 L L VH VL VH VL H H L 

C2 VL L VL VL VL M H L VL 

C3 H VH VL VH VH M VH H VL 

C4 L VL VH VL VL M H H VL 

C5 M H L H M M H VL VL 

C6 VH L VH M M M L VH L 

C7 VL M M H L H M M M 

C8 M VH VH M M VL M VL VH 

C9 VL H H H VL VL M VH L 

C10 H M M H L VH H M L 

C11 H VL VH VH H L L VH VL 

C12 VL M VH VL VL VL H VL M 

C13 L H M VH VH M L VH VH 

C14 VL L L VL VL M M VH M 

C15 VH L H VL H M L H VH 

C16 H H H L M M M VL M 

C17 VL H M VH VL L L M H 

C18 H VL VL M L VL L VL H 

C19 VL VH M VH VH M H VH H 

 

Table 5: Qualitative Assessment for the three alternatives 
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The qualitative ratings are converted into fuzzy triangular numbers and 

then aggregate ratings are generated using Eqn (2). Table 6 presents the aggre-

gate fuzzy decision matrix for the three alternatives.  

Criteria A1 A2 A3 Min Max 

C1 (1,5,9) (1,3.667,9) (1,5.667,9) 1 9 

C2 (1,1.667,5) (1,2.333,7) (1,3.667,9) 1 9 

C3 (1,5.667,9) (3,7.667,9) (1,5.667,9) 1 9 

C4 (1,4.333,9) (1,2.333,7) (1,5,9) 1 9 

C5 (1,5,9) (3,5.667,9) (1,3,9) 1 9 

C6 (1,7,9) (3,5,7) (1,5,9) 1 9 

C7 (1,3.667,7) (1,5.667,9) (3,5,7) 1 9 

C8 (3,7.667,9) (1,3.667,7) (1,5,9) 1 9 

C9 (1,5,9) (1,3,9) (1,5.667,9) 1 9 

C10 (3,5.667,9) (1,6.333,9) (1,5,9) 1 9 

C11 (1,5.667,9) (1,6.333,9) (1,4.333,9) 1 9 

C12 (1,5,9) (1,1,3) (1,4.333,9) 1 9 

C13 (1,5,9) (3,7.667,9) (1,7,9) 1 9 

C14 (1,2.333,5) (1,2.333,7) (3,6.333,9) 1 9 

C15 (1,6.333,9) (1,4.333,9) (1,6.333,9) 1 9 

C16 (5,7,9) (1,4.333,7) (1,3.667,7) 1 9 

C17 (1,4.333,9) (1,4.333,9) (1,5,9) 1 9 

C18 (1,3,9) (1,3,7) (1,3.667,9) 1 9 

C19 (1,5,9) (3,7.667,9) (5,7.667,9) 1 9 

 

Table 6. Aggregate fuzzy decision matrix for alternatives 

 

After obtaining the fuzzy decision matrix and fuzzy/crisp criteria weights, 

we apply the four MCDM techniques. The results are presented as follows.  

 

4.1 Fuzzy VIKOR 

First of all, we generate aggregated crisp ratings for the three alternatives using eqn 

(6). Based on these values, we will compute the best 
*

jf and the worst values jf 

 
of 

the 19 criteria using eqn (7). Table 7 presents the results for the aggregated crisp rat-

ings,
*

jf and jf 
for the 19 criteria.  
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Criteria 

Crisp Ratings 
*

jf  jf 
 A1 A2 A3 

C1 5 4.111 5.444 5.444 4.111 

C2 2.111 2.889 4.111 4.111 2.111 

C3 5.444 7.111 5.444 7.111 5.444 

C4 4.556 2.889 5 5 2.889 

C5 5 5.778 3.667 5.778 3.667 

C6 6.333 5 5 6.333 5 

C7 3.778 5.444 5 5.444 3.778 

C8 7.111 3.778 5 7.111 3.778 

C9 5 3.667 5.444 5.444 3.667 

C10 5.778 5.889 5 5.889 5 

C11 5.444 5.889 4.556 5.889 4.556 

C12 5 1.333 4.556 5 1.333 

C13 5 7.111 6.333 7.111 5 

C14 2.556 2.889 6.222 6.222 2.556 

C15 5.889 4.556 5.889 5.889 4.556 

C16 7 4.222 3.778 7 3.778 

C17 4.556 4.556 5 5 4.556 

C18 3.667 3.333 4.111 4.111 3.333 

C19 5 7.111 7.444 7.444 5 

 

Table 7. The best values 
*

jf and the worst values jf 

 
for the 19 criteria 

 

Table 8 presents the Si, Ri and Qi values for the three alternatives computed 

using eqn (7-9). The values of  S
*
= 0.345, S

- 
= 0.603, R

*
= 0.058, R

-
 =0.087 are 

obtained using eqn (10).  

 

A1 A2 A3 

Si 0.506 0.603 0.345 

Ri 0.069 0.087 0.058 

Qi 0.493 1 0 

 

Table 8. Si, Ri and Qi values for the three alternatives 

Table 9 ranks the three alternatives, sorting by the values of Si, Ri and Qi 

obtained from Table 8 in ascending order.  
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Si A3 A1 A2 

Ri A3 A1 A2 

Qi A3 A1 A2 

 

Table 9: Alternative rankings 

 

It can be seen from the results of Table 9 that alternative A3 is the best 

ranked by the measure Qi(minimum). We now check it for the following two 

conditions (section 3.3.1). 

1). C1: acceptable advantage (eqn(11)).  

Using eqn (11), DQ = 1/19-1 = 1/18 = 0.055. Applying eqn (10), we find 

Q(A1)-Q(A3) = 0.4939-0= 0.4939 > 0.055, hence the condition 

(2) (1)( ) ( )Q A Q A DQ   is satisfied. 

2). C2: Acceptable stability in decision making (eqn (12)) 

Since alternative A3 is also best ranked by Si and Ri (considering the ―by 

consensus rule   0.5‖), therefore it is finally chosen and ranked the best urban 

transportation project. 

 

4.2 Fuzzy TOPSIS 

We begin by performing normalization of the fuzzy decision matrix of alterna-

tives using eqns (14-15). For example, the normalized rating of alternative A1 for 

criteria C2 (Operating costs), which is a cost category criteria is given by: 

 1)1,1,1(min 

i
ja

 

1 1 1
( , , ) (0.2,0.6,1)
5 1.667 1

ijr                     

The normalized value of alternative A1 for criteria C1 (Revenues) which is 

a benefit category criteria is given by:  

9)9,9,9(max* 
i

jc
 



19 

 

1 5 9
( , , ) (0.11,0.556,1)
9 9 9

ijr  
 

Likewise, we compute the normalized values of the alternatives for the re-

maining criteria. The normalized fuzzy decision matrix for the 3 alternatives is 

presented in Table 10. 

 

Criteria A1 A2 A3 

C1 (0.111,0.556,1) (0.111,0.407,1) (0.111,0.629,1) 

C2 (0.2,0.6,1) (0.142,0.428,1) (0.111,0.272,1) 

C3 (0.111,0.629,1) (0.333,0.851,1) (0.111,0.629,1) 

C4 (0.111,0.481,1) (0.111,0.259,0.778) (0.111,0.556,1) 

C5 (0.111,0.556,1) (0.333,0.629,1) (0.111,0.333,1) 

C6 (0.111,0.778,1) (0.333,0.556,0.778) (0.111,0.556,1) 

C7 (0.111,0.523,0.778) (0.111,0.629,1) (0.333,0.556,0.778) 

C8 (0.333,0.851,1) (0.111,0.407,0.778) (0.111,0.556,1) 

C9 (0.111,0.556,1) (0.111,0.333,1) (0.111,0.629,1) 

C10 (0.111,0.176,0.333) (0.111,0.157,1) (0.111,0.2,1) 

C11 (0.111,0.629,1) (0.111,0.703,1) (0.111,0.481,1) 

C12 (0.111,0.556,1) (0.111,0.111,0.333) (0.111,0.481,1) 

C13 (0.111,0.556,1) (0.333,0.851,1) (0.111,0.778,1) 

C14 (0.111,0.259,0.556) (0.111,0.259,0.778) (0.333,0.703,1) 

C15 (0.111,0.703,1) (0.111,0.481,1) (0.111,0.703,1) 

C16 (0.556,1,1) (0.111,0.481,0.778) (0.111,0.407,0.778) 

C17 (0.111,0.481,1) (0.111,0.481,1) (0.111,0.556,1) 

C18 (0.111,0.333,1) (0.111,0.333,0.778) (0.111,0.407,1) 

C19 (0.111,0.556,1) (0.333,0.851,1) (0.556,0.851,1) 

 

Table 10: Normalized fuzzy alternative ratings 

 

Then, the fuzzy weighted decision matrix for the three alternatives is con-

structed using eqn (16). The 
ijr  values from Table 10 and fuzzy criteria weight 

values ( jw  ) from Table 4 are used to compute the fuzzy weighted decision ma-

trix for the alternatives. For example, for alternative A1, the fuzzy weight for cri-

teria C1 (Revenues) is given by:  

(0.11,0.556,1)(.)(1,3,7) (0.11,1.667,7)ijv  
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Likewise, we compute the fuzzy weights for the remaining criteria for the 

three alternatives. The results are presented in Table 11. Based on these values, 

we then calculate the fuzzy positive ideal solution (A*) and the fuzzy negative 

ideal solutions (A-) for each criteria using eqn (17-18). For example, for criteria 

C1 (Revenues), (0.11,0.11,0.11)A   and 
* (7,7,7)A  . The last two columns 

of Table 11 contain the complete results for the 19 criteria.  

 

Criteria A1 A2 A3 A- A* 

C1 (0.111,1.667,7) (0.111,1.222,7) (0.111,1.889,7) 0.111 7 

C2 (0.2,3,9) (0.142,2.142,9) (0.111,1.363,9) 0.111 9 

C3 (0.111,2.308,9) (0.333,3.123,9) (0.111,2.308,9) 0.111 9 

C4 (0.111,2.086,9) (0.111,1.123,7) (0.111,2.407,9) 0.111 9 

C5 (0.111,2.778,9) (0.333,3.148,9) (0.111,1.666,9) 0.111 9 

C6 (0.111,2.851,9) (0.333,2.037,7) (0.111,2.037,9) 0.111 9 

C7 (0.111,2.619,7) (0.111,3.148,9) (0.333,2.778,7) 0.111 9 

C8 (0.333,1.987,5) (0.111,0.950,3.889) (0.111,1.296,5) 0.111 5 

C9 (0.111,1.667,7) (0.111,1,7) (0.111,1.889,7) 0.111 7 

C10 (0.111,0.647,2.333) (0.111,0.578,7) (0.111,0.7333,7) 0.111 7 

C11 (0.111,2.728,9) (0.111,3.049,9) (0.111,2.086,9) 0.111 9 

C12 (0.111,2.778,9) (0.111,0.556,3) (0.111,2.407,9) 0.111 9 

C13 (0.111,1.667,7) (0.333,2.556,7) (0.111,2.333,7) 0.111 7 

C14 (0.111,1.641,5) (0.111,1.641,7) (0.333,4.456,9) 0.111 9 

C15 (0.556,5.395,9) (0.556,3.691,9) (0.556,5.395,9) 0.556 9 

C16 (0.556,3,5) (0.111,1.444,3.889) (0.111,1.222,3.889) 0.111 5 

C17 (0.111,2.086,9) (0.111,2.086,9) (0.111,2.407,9) 0.111 9 

C18 (0.111,1.444,9) (0.111,1.444,7) (0.111,1.765,9) 0.111 9 

C19 (0.333,3.148,9) (1,4.827,9) (1.667,4.827,9) 0.333 9 

 

Table 11: Normalized weighted fuzzy alternative ratings, FNIS and FPIS  

 

Then, we compute the distance dv (.) of each alternative from the fuzzy 

positive ideal matrix (A*) and fuzzy negative ideal matrix (A-) using eqns (21). 

For example, for alternative A1 and criteria C1, the distances ),( *

1 AAdv  and 

),( 1

AAdv are computed as follows: 
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* 2 2 2

1

1
( , ) (0.111 7) (1.667 7) (7 7) 5.029

3
vd A A           

2 2 2

1

1
( , ) (0.111 0.111) (1.667 0.111) (7 0.111) 4.077

3
vd A A           

Likewise, we compute the distances for the remaining criteria for the three 

alternatives. The results are shown in Table 12. 

 

Criteria 

d- d* 

A1 A2 A3 A1 A2 A3 

C1 4.077 4.028 4.107 5.029 5.191 4.952 

C2 5.396 5.264 5.182 6.149 6.467 6.765 

C3 5.286 5.420 5.286 6.423 6.045 6.423 

C4 5.257 4.020 5.3004 6.501 6.953 6.389 

C5 5.357 5.424 5.209 6.264 6.037 6.653 

C6 5.370 4.131 5.251 6.239 6.521 6.519 

C7 4.232 5.423 4.266 6.422 6.144 6.267 

C8 3.026 2.234 2.904 3.206 3.72 3.541 

C9 4.077 4.0102 4.107 5.029 5.274 4.952 

C10 1.319 3.986 3.993 6.044 5.437 5.376 

C11 5.349 5.405 5.257 6.280 6.175 6.501 

C12 5.357 1.687 5.3004 6.264 7.88 6.389 

C13 4.077 4.222 4.179 5.029 4.625 4.803 

C14 2.957 4.074 5.713 7.051 6.761 5.649 

C15 5.619 5.2007 5.619 5.301 5.758 5.301 

C16 3.288 2.312 2.273 2.813 3.548 3.624 

C17 5.257 5.257 5.3004 6.501 6.50 6.389 

C18 5.189 4.051 5.22 6.735 6.833 6.616 

C19 5.260 5.649 5.688 6.0375 5.209 4.871 

 

Table 12: Distances of alternatives from the FNIS and FPIS.  

 

Then, we compute the distances *

id and 
id   using eqns (19) and (20) for the 

three alternatives. For example, for alternative A1 and criteria C1, the distances 

*

id  and 
id   are given by:  
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2 2 2

2 2 2

2 2 2

1
(0.111 0.111) (1.667 0.111) (7 0.111)

3

1
(0.2 0.111) (3 0.111) (9 0.111) ..

3

1
.. (0.333 0.333) (3.148 0.333) (9 0.333) 85.76

3

id          

       

        
 

and 

* 2 2 2

2 2 2

2 2 2

1
(0.111 7) (1.667 7) (7 7)

3

1
(0.2 9) (3 9) (9 9) ..

3

1
.. (0.333 9) (3.148 9) (9 9) 109.327

3

id         

       

        

 

Then, we compute the closeness coefficient (CCi) of the three alternatives 

using eqn (22). For example, for alternative A1, the closeness coefficient is given 

by:  

CCi =  
id  /(

id  + 
id  ) = 85.76/(85.76+109.327) = 0.4395 

Likewise, CCi for the other two alternatives are computed. The final results 

are shown in Table 13. 

 

 
A1 A2 A3 

d
-
 85.760 81.804 90.163 

d
*
 109.327 111.088 107.988 

CCi 0.4395 0.424 0.455 

 

A3>A1>A2 

 

Table 13: Closeness coefficient ratios for the three alternatives 

 

By comparing the CCi values of the three alternatives (Table 13), we find 

that A3>A1>A2. Therefore, alternative A3 is finally ranked as best and recom-

mended for implementation.  
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4.3 Fuzzy SAW 

Firstly, we normalize the alternative ratings for the 19 criteria using eqn (23-24).  

For example, criteria C1 is of benefit type (i.e. the larger the better), therefore its 

normalized outcome is 
5 5

0.9183
max{5,4.111,5.444} 5.444

   . For criteria C2, 

which is of cost type (i.e. the less, the better), the normalized outcome is 

min{2.111,2.889,4.111} 2.111
1

2.111 2.111
   . Table 14 presents the normalized values for 

the three alternatives and the weights of the 19 criteria.  

 

Criteria 

Crisp values 

 

Min Max Normalized Crisp Value 

A1 A2 A3 A1 A2 A3 

C1 5 4.111 5.444 4.111 5.444 0.918 0.755 1.000 

C2 2.111 2.889 4.111 2.111 4.111 1.000 0.731 0.514 

C3 5.444 7.111 5.444 5.444 7.111 0.766 1.000 0.766 

C4 4.556 2.889 5 2.889 5.000 0.911 0.578 1.000 

C5 5 5.778 3.667 3.667 5.778 0.865 1.000 0.635 

C6 6.333 5 5 5.000 6.333 1.000 0.789 0.789 

C7 3.778 5.444 5 3.778 5.444 0.694 1.000 0.918 

C8 7.111 3.778 5 3.778 7.111 1.000 0.531 0.703 

C9 5 3.667 5.444 3.667 5.444 0.918 0.673 1.000 

C10 5.778 5.889 5 5.000 5.889 0.865 0.849 1.000 

C11 5.444 5.889 4.556 4.556 5.889 0.925 1.000 0.774 

C12 5 1.333 4.556 1.333 5.000 1.000 0.267 0.911 

C13 5 7.111 6.333 5.000 7.111 0.703 1.000 0.891 

C14 2.556 2.889 6.222 2.556 6.222 0.411 0.464 1.000 

C15 5.889 4.556 5.889 4.556 5.889 1.000 0.774 1.000 

C16 7 4.222 3.778 3.778 7.000 1.000 0.603 0.540 

C17 4.556 4.556 5 4.556 5.000 0.911 0.911 1.000 

C18 3.667 3.333 4.111 3.333 4.111 0.892 0.811 1.000 

C19 5 7.111 7.444 5.000 7.444 0.672 0.955 1.000 

 

Table 14: Crisp alternative ratings 

 

Using eq (25), we now calculate the overall performance rating for the 

three alternatives. For example, for alternative A1, the overall performance rating 

0.918*3.33 1*5 .... 0.672*5.778 72.666     . Table 15 presents the overall 
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performance ratings for the three alternatives. It can be seen that alternative A3 

has the highest value, therefore it is finally selected. 

 

Criteria Normalized crisp value Criteria Weight Weighted criteria value 

A1 A2 A3 A1 A2 A3 

C1 0.918 0.755 1.000 3.333 3.061 2.517 3.333 

C2 1.000 0.731 0.514 5.000 5.000 3.654 2.568 

C3 0.766 1.000 0.766 4.111 3.148 4.111 3.148 

C4 0.911 0.578 1.000 4.556 4.151 2.632 4.556 

C5 0.865 1.000 0.635 5.000 4.327 5.000 3.173 

C6 1.000 0.789 0.789 4.111 4.111 3.246 3.246 

C7 0.694 1.000 0.918 5.000 3.469 5.000 4.592 

C8 1.000 0.531 0.703 2.556 2.556 1.358 1.797 

C9 0.918 0.673 1.000 3.333 3.061 2.245 3.333 

C10 0.865 0.849 1.000 3.778 3.269 3.208 3.778 

C11 0.925 1.000 0.774 4.556 4.212 4.556 3.524 

C12 1.000 0.267 0.911 5.000 5.000 1.333 4.556 

C13 0.703 1.000 0.891 3.333 2.344 3.333 2.969 

C14 0.411 0.464 1.000 5.889 2.419 2.734 5.889 

C15 1.000 0.774 1.000 7.444 7.444 5.759 7.444 

C16 1.000 0.603 0.540 3.000 3.000 1.810 1.619 

C17 0.911 0.911 1.000 4.556 4.151 4.151 4.556 

C18 0.892 0.811 1.000 4.556 4.063 3.694 4.556 

C19 0.672 0.955 1.000 5.778 3.881 5.519 5.778 

 

Total 72.666 65.858 74.412 

 A3>A1>A2 

 

Table 15: Crisp Normalized alternative ratings 

 

4.4 Fuzzy GRA 

Firstly, we normalize the alternative data using eqn (26-28). Since C1 is a benefit type 

criterion, it is normalized using eqn (26) as follows.  

5 4.111
0.667

5.444 4.111
ijr


 


 

The normalized value for criteria C2 (cost criteria) is obtained using eqn (27): 
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4.111 2.111
1

4.111 2.111


 


(The least the better type criteria) 

There is no the closer to the goal type criteria (eqn (28)) in our study. Table 16 

presents the normalized values of the 19 criteria for the three alternatives. The 

reference sequence for the normalized criteria ),...,,( 01902010 xxxX  containing 

the ideal solutions and is presented in the last column of Table 16. It can be seen 

that for benefit type criteria, it is the maximum value and for cost type criteria it 

is the minimum value.
  

 

Criteria 

Crisp 

Min Max 

Normalized value Reference 

sequence A1 A2 A3 A1 A2 A3 

C1 5 4.111 5.444 4.111 5.444 0.667 0 1 1 

C2 2.111 2.889 4.111 2.111 4.111 1 0.611 0 0 

C3 5.444 7.111 5.444 5.444 7.111 0 1 0 1 

C4 4.556 2.889 5 2.889 5 0.789 0 1 1 

C5 5 5.778 3.667 3.667 5.778 0.631 1 0 1 

C6 6.333 5 5 5 6.333 1 0 0 1 

C7 3.778 5.444 5 3.778 5.444 0 1 0.733 1 

C8 7.111 3.778 5 3.778 7.111 1 0 0.367 1 

C9 5 3.667 5.444 3.667 5.444 0.75 0 1 1 

C10 5.778 5.889 5 5 5.889 0.125 0 1 0 

C11 5.444 5.889 4.556 4.556 5.889 0.667 1 0 1 

C12 5 1.333 4.556 1.333 5 1 0 0.878 1 

C13 5 7.111 6.333 5 7.111 0 1 0.631 1 

C14 2.556 2.889 6.222 2.556 6.222 0 0.090 1 1 

C15 5.889 4.556 5.889 4.556 5.889 1 0 1 1 

C16 7 4.222 3.778 3.778 7 1 0.137 0 1 

C17 4.556 4.556 5 4.556 5 0 0 1 1 

C18 3.667 3.333 4.111 3.333 4.111 0.428 0 1 1 

C19 5 7.111 7.444 5 7.444 0 0.863 1 1 

 

Table 16: Normalized alternative ratings and Reference Sequence 

 

Now, we calculate the grey relational coefficient ),( 0 ijj xx  for the three al-

ternatives using eqn (29).  For example, for alternative A1, criteria C1, 
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 =0.5 

11

min 11 12 193

max 11 12 193

01 11

0.667 1 0.333

{ , ,..., } {0.333,1,0,...,0} 0

{ , ,..., } {0.333,1,0,...,0} 1

0 0.5*1
( , ) 0.6

   0.333 0.5*1

Min Min

Max Max

x x

   

      

      


 



 

Table 17 presents the results of grey relational coefficient. The last column 

presents the normalized criteria weights. The distinguishing coefficient is set 

equal to 0.5. 

 

Criteria Delta (∆) Grey coefficient (γ) Criteria  

weight 

(crisp) 
A1 A2 A3 A1 A2 A3 

C1 0.333 1 0 0.6 0.333 1 0.039 

C2 1 0.611 0 1 0.562 0.333 0.0589 

C3 1 0 1 0.333 1 0.333 0.0484 

C4 0.210 1 0 0.703 0.333 1 0.0536 

C5 0.368 0 1 0.575 1 0.333 0.0589 

C6 0 1 1 1 0.333 0.333 0.0484 

C7 1 0 0.266 0.333 1 0.652 0.0589 

C8 0 1 0.633 1 0.333 0.441 0.0301 

C9 0.25 1 0 0.667 0.333 1 0.0392 

C10 0.125 0 1 0.363 0.333 1 0.0445 

C11 0.333 0 1 0.6 1 0.333 0.0536 

C12 0 1 0.121 1 0.333 0.804 0.0589 

C13 1 0 0.368 0.333 1 0.575 0.0392 

C14 1 0.909 0 0.333 0.354 1 0.0693 

C15 0 1 0 1 0.333 1 0.0876 

C16 0 0.862 1 1 0.367 0.333 0.0353 

C17 1 1 0 0.333 0.333 1 0.0536 

C18 0.571 1 0 0.467 0.333 1 0.0536 

C19 1 0.136 0 0.333 0.785 1 0.0680 

delta min 0 

delta max 1 

 

Table 17: Grey relational coefficients 
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Now, we calculate the grey relational grade for the three alternatives using 

eqn (29). For example, for alternative A1, 

0 1( , ) 0.6*0.039 0.1*0.0589 ... 0.333*0.068 0.6267X X       

Table 18 presents the results for the grey relational grade for the three al-

ternatives. It can be seen that alternative A3 has the highest value and therefore it 

is finally chosen. 

 

Criteria Weighted grey coefficient (Γ) 

A1 A2 A3 

C1 0.023 0.013 0.039 

C2 0.058 0.033 0.019 

C3 0.016 0.048 0.016 

C4 0.037 0.017 0.053 

C5 0.033 0.058 0.019 

C6 0.048 0.016 0.016 

C7 0.019 0.058 0.038 

C8 0.030 0.010 0.013 

C9 0.026 0.013 0.039 

C10 0.016 0.014 0.044 

C11 0.032 0.053 0.017 

C12 0.058 0.019 0.047 

C13 0.013 0.039 0.022 

C14 0.023 0.024 0.069 

C15 0.087 0.029 0.087 

C16 0.035 0.012 0.011 

C17 0.017 0.017 0.053 

C18 0.025 0.017 0.053 

C19 0.022 0.053 0.068 

Grey  Relational 

grade 0.626 0.553 0.732 

A3>A1>A2 

 

Table 18: Grey relational grade 
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Table 19 presents the ranking results obtained from the application of four 

MCDM techniques. ‗1‘ represents the highest rank and ‗3‘ represents the lowest 

rank. It can be seen from Table 19 that the results of the four techniques are in 

agreement with each other as the alternative A3 is rated best (sustainable) by all 

the four techniques. Therefore, using the veto technique (or majority winner 

rule), alternative A3 is finally chosen as the best urban mobility project from sus-

tainability perspective and is recommended for implementation.  

 

Technique A1 A2 A3 

Fuzzy TOPSIS 2 3 1 

Fuzzy VIKOR 2 3 1 

Fuzzy SAW 2 3 1 

Fuzzy GRA 2 3 1 

 

A3>A1>A2 

 

Table 19: Final Ranking Results 

 

Please note that the above results are based on artificial numbers and used 

for demonstration purposes only. Interested readers (or practitioners) can use real 

data and apply the above four techniques in a similar manner to seek accurate re-

sults. 

 

5. CONCLUSIONS AND FUTURE WORK  

In this paper, we perform multicriteria decision making (MCDM) for sustainabil-

ity evaluation of urban mobility projects using qualitative data. A three step ap-

proach is proposed. In the first step, we perform selection of evaluation criteria 

using literature review. In the second step, we generate criteria and alternative 

ratings using expert opinions. Qualitative data is used for rating the criteria and 

the alternatives which are then transformed into fuzzy triangular numbers for fur-

ther processing through multicriteria decision making techniques in step 3. The 

multicriteria decision making techniques used in our study are Fuzzy TOPSIS, 

Fuzzy VIKOR, Fuzzy SAW and Fuzzy GRA.  
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In this paper, we have limited our study to identification of sustainability 

evaluation criteria and demonstrating the application of four comparabale 

MCDM techniques for urban mobility project selection. In our future works, we 

intend to perform a).more numerical experiments to determine if these results 

always remain consistent irrespective of input data and b).assess the influence of 

criteria weights on final results using sensitivity analysis. 
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