2021

Volume 37, n° 3, July–September 2021

(résumés du n° 3/2021)

Volume 37, n° 2, April–June 2021

  • Vassallo D, Buccheri G, Corsi F. - A DCC-type approach for realized covariance modeling with score-driven dynamics, pp. 569-586. doi:10.1016/j.ijforecast.2020.07.006
  • Qu L. - A new approach to estimating earnings forecasting models: Robust regression MM-estimation, pp. 1011-1030. doi:10.1016/j.ijforecast.2020.11.003
  • de Bondt GJ, Hahn E, Zekaite Z. - ALICE: Composite leading indicators for euro area inflation cycles, pp. 687-707. doi:10.1016/j.ijforecast.2020.09.001
  • Casey E. - Are professional forecasters overconfident?, pp. 716-732. doi:10.1016/j.ijforecast.2020.09.002
  • Zeng Z, Li M. - Bayesian median autoregression for robust time series forecasting, pp. 1000-1010. doi:10.1016/j.ijforecast.2020.11.002
  • Ganics G, Odendahl F. - Bayesian VAR forecasts, survey information, and structural change in the euro area, pp. 971-999. doi:10.1016/j.ijforecast.2020.11.001
  • Kim D, Kang KH. - Conditional value-at-risk forecasts of an optimal foreign currency portfolio, pp. 838-861. doi:10.1016/j.ijforecast.2020.09.011
  • Kath C, Ziel F. - Conformal prediction interval estimation and applications to day-ahead and intraday power markets, pp. 777-799. doi:10.1016/j.ijforecast.2020.09.006
  • Berge TJ, Chang AC, Sinha NR. - Corrigendum to “Evaluating the conditionality of judgmental forecasts” [Int. J. Forecast. 35 (2019) 1627–1635], pp. 672-674. doi:10.1016/j.ijforecast.2020.08.006
  • Clements MP. - Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts, pp. 634-646. doi:10.1016/j.ijforecast.2020.08.003
  • Taylor JW. - Evaluating quantile-bounded and expectile-bounded interval forecasts, pp. 800-811. doi:10.1016/j.ijforecast.2020.09.007
  • Dimitriadis T, Schnaitmann J. - Forecast encompassing tests for the expected shortfall, pp. 604-621. doi:10.1016/j.ijforecast.2020.07.008
  • Melchior C, Zanini RR, Guerra RR, Rockenbach DA. - Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches, pp. 825-837. doi:10.1016/j.ijforecast.2020.09.010
  • Rubaszek M. - Forecasting crude oil prices with DSGE models, pp. 531-546. doi:10.1016/j.ijforecast.2020.07.004
  • Martin VL, Tang C, Yao W. - Forecasting the volatility of asset returns: The informational gains from option prices, pp. 862-880. doi:10.1016/j.ijforecast.2020.09.012
  • Calvo-Pardo H, Mancini T, Olmo J. - Granger causality detection in high-dimensional systems using feedforward neural networks, pp. 920-940. doi:10.1016/j.ijforecast.2020.10.004
  • Prestwich SD, Tarim SA, Rossi R. - Intermittency and obsolescence: A Croston method with linear decay, pp. 708-715. doi:10.1016/j.ijforecast.2020.08.010
  • Bojer CS, Meldgaard JP. - Kaggle forecasting competitions: An overlooked learning opportunity, pp. 587-603. doi:10.1016/j.ijforecast.2020.07.007
  • Greenwood-Nimmo M, Nguyen VH, Shin Y. - Measuring the Connectedness of the Global Economy, pp. 899-919. doi:10.1016/j.ijforecast.2020.10.003
  • Vrontos SD, Galakis J, Vrontos ID. - Modeling and predicting U.S. recessions using machine learning techniques, pp. 647-671. doi:10.1016/j.ijforecast.2020.08.005
  • Liu Y, Ye C, Sun J, Jiang Y, Wang H. - Modeling undecided voters to forecast elections: From bandwagon behavior and the spiral of silence perspective, pp. 461-483. doi:10.1016/j.ijforecast.2020.06.011
  • Li H, Sheng XS, Yang J. - Monitoring recessions: A Bayesian sequential quickest detection method, pp. 500-510. doi:10.1016/j.ijforecast.2020.06.013
  • Wilms I, Rombouts J, Croux C. - Multivariate volatility forecasts for stock market indices, pp. 484-499. doi:10.1016/j.ijforecast.2020.06.012
  • Arvanitis S, Post T, Potì V, Karabati S. - Nonparametric tests for Optimal Predictive Ability, pp. 881-898. doi:10.1016/j.ijforecast.2020.10.002
  • Richardson A, van Florenstein Mulder T, Vehbi T. - Nowcasting GDP using machine-learning algorithms: A real-time assessment, pp. 941-948. doi:10.1016/j.ijforecast.2020.10.005
  • Opschoor A, Lucas A. - Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting, pp. 622-633. doi:10.1016/j.ijforecast.2020.07.009
  • Cho D. - On the predictability of the distribution of excess returns in currency markets, pp. 511-530. doi:10.1016/j.ijforecast.2020.07.003
  • Costantini M, Kunst RM. - On using predictive-ability tests in the selection of time-series prediction models: A Monte Carlo evaluation, pp. 445-460. doi:10.1016/j.ijforecast.2020.06.010
  • Jokubaitis S, Celov D, Leipus R. - Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run, pp. 759-776. doi:10.1016/j.ijforecast.2020.09.005
  • Liu Y, Davanloo Tajbakhsh S, Conejo AJ. - Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions, pp. 812-824. doi:10.1016/j.ijforecast.2020.09.009
  • Fildes R, Goodwin P. - Stability in the inefficient use of forecasting systems: A case study in a supply chain company, pp. 1031-1046. doi:10.1016/j.ijforecast.2020.11.004
  • Yen Y-M, Yen T-J. - Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss functions, pp. 733-758. doi:10.1016/j.ijforecast.2020.09.004
  • Hoga Y. - The uncertainty in extreme risk forecasts from covariate-augmented volatility models, pp. 675-686. doi:10.1016/j.ijforecast.2020.08.009
  • Meira E, Cyrino Oliveira FL, Jeon J. - Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals, pp. 547-568. doi:10.1016/j.ijforecast.2020.07.005
  • Bastos BQ, Cyrino Oliveira FL, Milidiú RL. - U-Convolutional model for spatio-temporal wind speed forecasting, pp. 949-970. doi:10.1016/j.ijforecast.2020.10.007

Volume 37, n° 1, January-March 2021

(résumé n° 1/2021) * en attente de la réception de la version papier *

Dernière modification le